遗传 ›› 2024, Vol. 46 ›› Issue (3): 199-208.doi: 10.16288/j.yczz.23-268
收稿日期:
2023-10-25
修回日期:
2023-12-21
出版日期:
2024-03-20
发布日期:
2024-01-10
通讯作者:
林戈
E-mail:13387481620@163.com;linggf@hotmail.com
作者简介:
朱奕,硕士研究生,专业方向:生殖遗传学。E-mail: 13387481620@163.com
基金资助:
Yi Zhu1(), Xueqin Chen1, Lizhi Leng1,2, Ge Lin1,2(
)
Received:
2023-10-25
Revised:
2023-12-21
Published:
2024-03-20
Online:
2024-01-10
Contact:
Ge Lin
E-mail:13387481620@163.com;linggf@hotmail.com
Supported by:
摘要:
极性建立是影响早期胚胎发育的关键因素之一。极性建立起始于8细胞胚胎的肌球蛋白磷酸化,磷酸化激活肌动蛋白导致其启动收缩力。随后,肌动蛋白发生重组在每个卵裂球的非接触表面形成富含微绒毛的顶端结构域,并在极性蛋白复合物等的共同作用下形成标志着顶端结构域成熟的肌动球蛋白环。从极性建立的过程可知,顶端结构域的形成受到肌动蛋白相关蛋白以及极性蛋白复合物的影响,并且部分合子基因组激活(zygote genome activation, ZGA)和谱系分化特异性基因也会调控极性建立。在早期胚胎发育过程中,极性建立是第一次细胞谱系分化的基础。它通过影响不对称细胞分裂、谱系分化因子的不对称定位以及Hippo信号通路的活性来调控谱系分离和形态发生。本文对哺乳动物早期胚胎极性建立及对谱系分化影响的相关研究进行了梳理和总结,并讨论了目前已有研究在调控机制和物种方面的不足,以期为阐明早期胚胎极性建立提供线索与系统性视角。
朱奕, 陈雪沁, 冷丽智, 林戈. 早期胚胎极性建立及对谱系分化的影响[J]. 遗传, 2024, 46(3): 199-208.
Yi Zhu, Xueqin Chen, Lizhi Leng, Ge Lin. Early embryonic polarity establishment and implications for lineage differentiation[J]. Hereditas(Beijing), 2024, 46(3): 199-208.
[1] |
Nelson WJ. Adaptation of core mechanisms to generate cell polarity. Nature, 2003, 422(6933): 766-774.
doi: 10.1038/nature01602 |
[2] |
Mlodzik M. Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet, 2002, 18(11): 564-571.
doi: 10.1016/s0168-9525(02)02770-1 pmid: 12414186 |
[3] |
Knoblich JA. Mechanisms of asymmetric stem cell division. Cell, 2008, 132(4): 583-597.
doi: 10.1016/j.cell.2008.02.007 pmid: 18295577 |
[4] |
Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature, 2005, 437(7056): 275-280.
doi: 10.1038/nature03922 |
[5] |
Schulz KN, Harrison MM. Mechanisms regulating zygotic genome activation. Nat Rev Genet, 2018, 20(4): 221-234.
doi: 10.1038/s41576-018-0087-x |
[6] |
Zhu M, Zernicka Goetz M,. Building an apical domain in the early mouse embryo: lessons, challenges and perspectives. Curr Opin Cell Biol, 2020, 62: 144-149.
doi: S0955-0674(19)30110-3 pmid: 31869760 |
[7] |
Claire C, Yojiro Y. Lineage specification in the mouse preimplantation embryo. Development, 2016, 143(7): 1063-1074.
doi: 10.1242/dev.128314 pmid: 27048685 |
[8] |
Pratt HP, Ziomek CA, Reeve WJ, Johnson MH. Compaction of the mouse embryo: an analysis of its components. J Embryol Exp Morphol, 1982, 70: 113-132.
pmid: 7142893 |
[9] |
Lim HYG, Plachta N. Cytoskeletal control of early mammalian development. Nat Rev Mol Cell Biol, 2021, 22(8): 548-562.
doi: 10.1038/s41580-021-00363-9 |
[10] |
Zenker J, White MD, Gasnier M, Alvarez YD, Lim HYG, Bissiere S, Biro M, Plachta N. Expanding actin rings zipper the mouse embryo for blastocyst formation. Cell, 2018, 173(3): 776-791.e17.
doi: S0092-8674(18)30212-5 pmid: 29576449 |
[11] |
Zhu M, Leung CY, Shahbazi MN, Zernicka-Goetz M. Actomyosin polarisation through PLC-PKC triggers symmetry breaking of the mouse embryo. Nat Commun, 2017, 8(1): 921.
doi: 10.1038/s41467-017-00977-8 pmid: 29030553 |
[12] |
Vicente-Manzanares M, Ma XF, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol, 2009, 10(11): 778-790.
doi: 10.1038/nrm2786 |
[13] |
Maître JL, Niwayama R, Turlier H, Nédélec F, Hiiragi T. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat Cell Biol, 2017, 17(7): 849-855.
doi: 10.1038/ncb3185 |
[14] |
Leung CY, Zhu M, Zernicka-Goetz M. Polarity in cell-fate acquisition in the early mouse embryo. Curr Top Dev Biol, 2016, 120: 203-234.
doi: 10.1016/bs.ctdb.2016.04.008 pmid: 27475853 |
[15] |
Zhu M, Cornwall-Scoones J, Wang PZ, Handford CE, Na J, Thomson M, Zernicka-Goetz M. Developmental clock and mechanism of de novo polarization of the mouse embryo. Science, 2020, 370(6522): eabd2703.
doi: 10.1126/science.abd2703 |
[16] |
Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N, Buchholz F, Hiiragi T. The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev Cell, 2017, 40(3): 235-247.e7.
doi: S1534-5807(17)30006-0 pmid: 28171747 |
[17] |
Goley ED, Welch MD. The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol, 2006, 7(10): 713-726.
doi: 10.1038/nrm2026 |
[18] |
Campellone KG, Welch MD. A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol, 2010, 11(4): 237-251.
doi: 10.1038/nrm2867 |
[19] |
Rouiller I, Xu XP, Amann KJ, Egile C, Nickell S, Nicastro D, Li R, Pollard TD, Volkmann N, Hanein D. The structural basis of actin filament branching by the Arp2/3 complex. J Cell Biol, 2008, 180(5): 887-895.
doi: 10.1083/jcb.200709092 pmid: 18316411 |
[20] |
Lees-Miller JP, Henry G, Helfman DM. Identification of act2, an essential gene in the fission yeast Schizosaccharomyces pombe that encodes a protein related to actin. Proc Natl Acad Sci USA, 1992, 89(1): 80-83.
pmid: 1729722 |
[21] |
Schwob E, Martin RP. New yeast actin-like gene required late in the cell cycle. Nature, 1992, 355(6356): 179-182.
doi: 10.1038/355179a0 |
[22] |
Fyrberg FE. A Drosophila homologue of the Schizosaccharomyces pombe act2 gene. Biochem Genet, 1993, 31(7-8): 329-341.
pmid: 8274139 |
[23] |
Waterston R, Martin C, Craxton M, Huynh C, Coulson A, Hillier L, Durbin R, Green P, Shownkeen R, Halloran N. A survey of expressed genes in Caenorhabditis elegans. Nat Genet, 1992, 1(2): 114-123.
pmid: 1302004 |
[24] |
Moreau V, Galan JM, Devilliers G, Haguenauer-Tsapis R, Winsor B. The yeast actin-related protein Arp2p is required for the internalization step of endocytosis. Mol Biol Cell, 1997, 8(7): 1361-1375.
pmid: 9243513 |
[25] |
Schaerer-Brodbeck C, Riezman H. Functional interactions between the p35 subunit of the Arp2/3 complex and calmodulin in yeast. Mol Biol Cell, 2000, 11(4): 1113-1127.
pmid: 10749918 |
[26] |
Bailly M, Ichetovkin I, Grant W, Zebda N, Machesky LM, Segall JE, Condeelis J. The F-actin side binding activity of the Arp2/3 complex is essential for actin nucleation and lamellipod extension. Curr Biol, 2001, 11(8): 620-625.
pmid: 11369208 |
[27] |
Rogers SL, Wiedemann U, Stuurman N, Vale RD. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J Cell Biol, 2003, 162(6): 1079-1088.
doi: 10.1083/jcb.200303023 |
[28] |
Steffen A, Faix J, Resch GP, Linkner J, Wehland J, Small JV, Rottner K, Stradal TEB. Filopodia formation in the absence of functional WAVE- and Arp2/3-complexes. Mol Biol Cell, 2006, 17(6): 2581-2591.
pmid: 16597702 |
[29] |
Sun SC, Wang ZB, Xu YN, Lee SE, Cui XS, Kim NH. Arp2/3 complex regulates asymmetric division and cytokinesis in mouse oocytes. PLoS One, 2011, 6(4): e18392.
doi: 10.1371/journal.pone.0018392 |
[30] |
Kumar A, Dumasia K, Deshpande S, Gaonkar R, Balasinor NH. Actin related protein complex subunit 1b controls sperm release, barrier integrity and cell division during adult rat spermatogenesis. Biochim Biophys Acta, 2016, 1863(8): 1996-2005.
doi: 10.1016/j.bbamcr.2016.04.022 pmid: 27113856 |
[31] |
Sun SC, Wang QL, Gao WW, Xu YN, Liu HL, Cui XS, Kim NH. Actin nucleator Arp2/3 complex is essential for mouse preimplantation embryo development. Reprod Fertil Dev, 2012, 25(4): 617-623.
doi: 10.1071/RD12011 |
[32] |
Aloisio FM, Barber DL. Arp2/3 complex activity is necessary for mouse ESC differentiation, times formative pluripotency, and enables lineage specification. Stem Cell Rep, 2021, 17(6): 1318-1333.
doi: 10.1016/j.stemcr.2022.05.002 |
[33] |
Bowerman B, Shelton CA. Cell polarity in the early Caenorhabditis elegans embryo. Curr Opin Genet Dev, 1999, 9(4): 390-395.
pmid: 10449352 |
[34] |
Rose LS, Kemphues KJ. Early patterning of the C. elegans embryo. Annu Rev Genet, 1998, 32(1): 521-545.
doi: 10.1146/genet.1998.32.issue-1 |
[35] |
Etemad-Moghadam B, Guo S, Kemphues KJ. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell, 1996, 83(5): 743-752.
doi: 10.1016/0092-8674(95)90187-6 |
[36] |
Matsuzaki F. Asymmetric division of Drosophila neural stem cells: a basis for neural diversity. Curr Opin Neurobiol, 2000, 10(1): 38-44.
pmid: 10679433 |
[37] |
Wodarz A, Ramrath A, Grimm A, Knusta E. Drosophila atypical protein kinase C associates with bazooka and controls polarity of epithelia and neuroblasts. J Cell Biol, 2000, 150(6): 1361-1374.
doi: 10.1083/jcb.150.6.1361 pmid: 10995441 |
[38] |
Suzuki A, Yamanaka T, Hirose T, Manabe N, Mizuno K, Shimizu M, Akimoto K, Izumi Y, Ohnishi T, Ohno S. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J Cell Biol, 2001, 152(6): 1183-1196.
doi: 10.1083/jcb.152.6.1183 pmid: 11257119 |
[39] |
Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S. Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol, 2001, 154(3): 491-497.
pmid: 11489913 |
[40] |
Tepass U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol, 2012, 28(1): 655-685.
doi: 10.1146/cellbio.2012.28.issue-1 |
[41] |
Vinot S, Le T, Ohno S, Pawson T, Maro B, Louvet-Vallée S. Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction. Dev Biol, 2005, 282(2): 307-319.
doi: 10.1016/j.ydbio.2005.03.001 pmid: 15950600 |
[42] |
Plusa B, Frankenberg S, Chalmers A, Hadjantonakis AK, Moore CA, Papalopulu N, Papaioannou VE, Glover DM, Zernicka-Goetz M. Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J Cell Sci, 2005, 118(3): 505-515.
doi: 10.1242/jcs.01666 |
[43] |
Nicolas D, Tran L, Bernard M, Louvet-Vallée S. Inactivation of aPKCλ reveals a context dependent allocation of cell lineages in preimplantation mouse embryos. PLoS One, 2009, 4(9): e7117.
doi: 10.1371/journal.pone.0007117 |
[44] |
Joberty G, Petersen C, Gao L, Macara IG. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol, 2000, 2(8): 531-539.
doi: 10.1038/35019573 pmid: 10934474 |
[45] |
Cui XS, Li XY, Shen XH, Bae YJ, Kang JJ, Kim NH. Transcription profile in mouse four-cell, morula, and blastocyst: genes implicated in compaction and blastocoel formation. Mol Reprod Dev, 2007, 74(2): 133-143.
doi: 10.1002/mrd.v74:2 |
[46] |
Alarcon VB. Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo. Biol Reprod, 2010, 83(3): 347-358.
doi: 10.1095/biolreprod.110.084400 pmid: 20505164 |
[47] |
Frum T, Murphy TM, Ralston A. Hippo signaling resolves embryonic cell fate conflicts during establishment of pluripotency in vivo. Elife, 2018, 7: e42298.
doi: 10.7554/eLife.42298 |
[48] |
Lim HYG, Alvarez YD, Gasnier M, Wang YM, Tetlak P, Bissiere S, Wang HM, Biro M, Plachta N. Keratins are asymmetrically inherited fate determinants in the mammalian embryo. Nature, 2020, 585(7825): 404-409
doi: 10.1038/s41586-020-2647-4 |
[49] |
Choi I, Carey TS, Wilson CA, Knott JG. Transcription factor AP-2γ is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis. Development, 2012, 139(24): 4623-4632.
doi: 10.1242/dev.086645 pmid: 23136388 |
[50] |
Cao ZB, Carey TS, Ganguly A, Wilson CA, Paul S, Knott JG. Transcription factor AP-2γ induces early Cdx2 expression and represses Hippo signaling to specify the trophectoderm lineage. Development, 2015, 142(9): 1606-1615.
doi: 10.1242/dev.120238 pmid: 25858457 |
[51] |
Nishioka N, Inoue KI, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell, 2009, 16(3): 398-410.
doi: 10.1016/j.devcel.2009.02.003 pmid: 19289085 |
[52] |
Jedrusik A, Parfitt DE, Guo GJ, Skamagki M, Grabarek JB, Johnson MH, Robson P, Zernicka-Goetz M. Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev, 2008, 22(19): 2692-2706.
doi: 10.1101/gad.486108 |
[53] |
Hupalowska A, Jedrusik A, Zhu M, Bedford MT, Glover DM, Zernicka-Goetz M. CARM1 and paraspeckles regulate pre-implantation mouse embryo development. Cell, 2019, 175(7): 1902-1916.
doi: 10.1016/j.cell.2018.11.027 |
[54] |
Parfitt DE, Zernicka-Goetz M. Epigenetic modification affecting expression of cell polarity and cell fate genes to regulate lineage specification in the early mouse embryo. Mol Biol Cell, 2010, 21(15): 2649-2660.
doi: 10.1091/mbc.e10-01-0053 |
[55] |
Zhang J, Pi SB, Zhang N, Guo J, Zheng W, Leng LZ, Lin G, Fan HY. Translation regulatory factor BZW1 regulates preimplantation embryo development and compaction by restricting global non-AUG Initiation. Nat Commun, 2022, 13(1): 6621.
doi: 10.1038/s41467-022-34427-x pmid: 36333315 |
[56] |
Dard N, Louvet-Vallée S, Maro B. Orientation of mitotic spindles during the 8- to 16-cell stage transition in mouse embryos. PLoS One, 2009, 4(12): e8171.
doi: 10.1371/journal.pone.0008171 |
[57] |
Samarage CR, White MD, Álvarez YD, Fierro-González JC, Henon Y, Jesudason EC, Bissiere S, Fouras A, Plachta N. Cortical tension allocates the first inner cells of the mammalian embryo. Dev Cell, 2015, 34(4): 435-447.
doi: 10.1016/j.devcel.2015.07.004 pmid: 26279486 |
[58] |
Maître JL, Turlier H, Illukkumbura R, Eismann B, Niwayama R, Nedelec F, Hiiragi T. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature, 2016, 536(7616): 344-348.
doi: 10.1038/nature18958 |
[59] |
Skamagki M, Wicher KB, Jedrusik A, Ganguly S, Zernicka-Goetz M. Asymmetric localization of Cdx2 mRNA during the first cell-fate decision in early mouse development. Cell Rep, 2013, 3(2): 442-457.
doi: 10.1016/j.celrep.2013.01.006 pmid: 23375373 |
[60] |
Hawdon A, Geoghegan ND, Mohenska M, Elsenhans A, Ferguson C, Polo JM, Parton RG, Zenker J. Apicobasal RNA asymmetries regulate cell fate in the early mouse embryo. Nat Commun, 2023, 14(1): 2909.
doi: 10.1038/s41467-023-38436-2 pmid: 37253716 |
[61] |
Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Digabel JL, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature, 2011, 474(7350): 179-183.
doi: 10.1038/nature10137 |
[62] |
Skory RM, Moverley AA, Ardestani G, Alvarez Y, Domingo-Muelas A, Pomp O, Hernandez B, Tetlak P, Bissiere S, Stern CD, Sakkas D, Plachta N. The nuclear lamina couples mechanical forces to cell fate in the preimplantation embryo via actin organization. Nat Commun, 2023, 14(1): 3101.
doi: 10.1038/s41467-023-38770-5 pmid: 37248263 |
[63] |
Hirate Y, Hirahara S, Inoue KI, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, Ohno S, Marikawa Y, Nakao K, Shimono A, Sasaki H. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol, 2014, 23(13): 1181-1194.
doi: 10.1016/j.cub.2013.05.014 |
[64] |
Shi XL, Yin ZX, Ling B, Wang LL, Liu C, Ruan XH, Zhang WY, Chen LY. Rho differentially regulates the Hippo pathway by modulating the interaction between Amot and Nf2 in the blastocyst. Development, 2017, 144(21): 3957-3967.
doi: 10.1242/dev.157917 pmid: 28947533 |
[65] | Cockburn K, Biechele S, Garner J, Rossant J. The Hippo pathway member Nf2 is required for inner cell mass specification. Curr Biol, 2013, 16(13): 1195-1201. |
[66] | Yu C, Ji SY, Dang YJ, Sha QQ, Yuan YF, Zhou JJ, Yan LY, Qiao J, Tang FC, Fan HY. Oocyte-expressed yes- associated protein is a key activator of the early zygotic genome in mouse. Cell Res, 2016, 26(003): 275-287. |
[67] |
Wu YW, Li S, Zheng W, Li YC, Chen L, Zhou Y, Deng ZQ, Lin G, Fan HY, Sha QQ. Publisher correction: dynamic mRNA degradome analyses indicate a role of histone H3K4 trimethylation in association with meiosis-coupled mRNA decay in oocyte aging. Nat Commun, 2022, 13(1): 3441.
doi: 10.1038/s41467-022-31224-4 |
[68] |
Sha QQ, Zhu YZ, Li S, Jiang Y, Chen L, Sun XH, Shen L, Ou XH, Fan HY. Characterization of zygotic genome activation-dependent maternal mRNA clearance in mouse. Nucleic Acids Res, 2020, 48(2): 879-894.
doi: 10.1093/nar/gkz1111 |
[69] |
Zhu M, Shahbazi M, Martin A, Zhang CX, Sozen B, Borsos M, Mandelbaum RS, Paulson RJ, Mole MA, Esbert M, Titus S, Scott RT, Campbell A, Fishel S, Gradinaru V, Zhao H, Wu KL, Chen ZJ, Seli E, de Los Santos MJ, Zernicka-Goetz M. Human embryo polarization requires PLC signaling to mediate trophectoderm specification. Elife, 2021, 10: e65068.
doi: 10.7554/eLife.65068 |
[70] |
Kagawa H, Javali A, Khoei HH, Sommer TM, Sestini G, Novatchkova M, Reimer YSO, Castel G, Bruneau A, Maenhoudt N, Lammers J, Loubersac S, Freour T, Vankelecom H, David L, Rivron N. Human blastoids model blastocyst development and implantation. Nature, 2022, 601(7894): 600-605.
doi: 10.1038/s41586-021-04267-8 |
[1] | 王文龙, 张春霞. 哺乳动物卵子与早期胚胎中全转录组poly(A)尾研究进展[J]. 遗传, 2023, 45(4): 273-278. |
[2] | 王梓川, 张嘉祺, 李磊. 哺乳动物早期胚胎发育的体外研究[J]. 遗传, 2022, 44(4): 269-274. |
[3] | 朱屹然,张美玲,翟志超,赵云蛟,马馨. 生殖细胞及早期胚胎基因组印记的表观调控[J]. 遗传, 2016, 38(2): 103-108. |
[4] | 赵春丽,焦丽红,李雪梅,陈新,郝艳红,王柳. 小鼠母源因子对早期胚胎发育的影响[J]. 遗传, 2006, 28(5): 601-605. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: