遗传 ›› 2025, Vol. 47 ›› Issue (10): 1099-1117.doi: 10.16288/j.yczz.25-036
张宏博1(), 孙凤桂2, 孙建伟1, 汤琦3(
), 张旭1(
)
收稿日期:
2025-02-11
修回日期:
2025-05-26
出版日期:
2025-10-20
发布日期:
2025-05-28
通讯作者:
张旭,博士,讲师,研究方向:细胞生物学。E-mail: xuzhang@ynu.edu.cn;作者简介:
张宏博,硕士研究生,专业方向:生物化学与分子生物学。E-mail: 2952448189@qq.com
基金资助:
Hongbo Zhang1(), Fenggui Sun2, Jianwei Sun1, Qi Tang3(
), Xu Zhang1(
)
Received:
2025-02-11
Revised:
2025-05-26
Published:
2025-10-20
Online:
2025-05-28
Supported by:
摘要:
乳腺肿瘤干细胞(breast cancer stem cells,BCSCs)是乳腺癌中具有干细胞特征的细胞亚群,具有自我更新、多向分化和高度的肿瘤驱动能力。研究表明,BCSCs在乳腺癌发生、发展及耐药过程中发挥着关键作用,因此深入揭示BCSCs的生物学特性与调控机制是突破乳腺癌治疗难题的重要途径。本综述系统总结了BCSCs表面标志物鉴定、与肿瘤复发与转移的关系、关键调控信号网络,以及其在耐药性中的作用机制,同时探讨了基于BCSCs异质性和动态调控节点的靶向治疗策略,展望了未来精准治疗乳腺癌的潜在方向,为相关药物研发提供理论支持和新颖依据。
张宏博, 孙凤桂, 孙建伟, 汤琦, 张旭. 乳腺肿瘤干细胞在乳腺癌发生、发展及耐药中的作用[J]. 遗传, 2025, 47(10): 1099-1117.
Hongbo Zhang, Fenggui Sun, Jianwei Sun, Qi Tang, Xu Zhang. The role and mechanism of cancer stem cells in breast carcinogenesis, progression and drug resistance[J]. Hereditas(Beijing), 2025, 47(10): 1099-1117.
[1] |
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin, 2023, 73(1): 17-48.
pmid: 36633525 |
[2] |
Dvir K, Giordano S, Leone JP. Immunotherapy in breast cancer. Int J Mol Sci, 2024, 25(14): 7517.
pmid: 39062758 |
[3] |
Bahreyni A, Mohamud Y, Luo HL. Oncolytic virus- based combination therapy in breast cancer. Cancer Lett, 2024, 585: 216634.
pmid: 38309616 |
[4] |
Zhang L, Chen WM, Liu SL, Chen CS. Targeting breast cancer stem cells. Int J Biol Sci, 2023, 19(2): 552-570.
pmid: 36632469 |
[5] |
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997, 3(7):730-737.
pmid: 9212098 |
[6] |
Vasileiou M, Diamantoudis SC, Tsianava C, Nguyen NP. Immunotherapeutic strategies targeting breast cancer stem cells. Curr Oncol, 2024, 31(6): 3040-3063.
pmid: 38920716 |
[7] | Xu LF, Zhang J, Tian ZQ, Wu YZ. Epigenetics in cancer stem cells. Hereditas(Beijing), 2013, 35(9): 1049-1057. |
许力凡, 张记, 田志强, 吴玉章. 表观遗传学与肿瘤干细胞. 遗传, 2013, 35(9): 1049-1057. | |
[8] |
Ray SK, Mukherjee S. Breast cancer stem cells as novel biomarkers. Clin Chim Acta, 2024, 557: 117855.
pmid: 38453050 |
[9] |
Quaglino E, Conti L, Cavallo F. Breast cancer stem cell antigens as targets for immunotherapy. Semin Immunol, 2020, 47: 101386.
pmid: 31932198 |
[10] |
Malla R, Jyosthsna K, Rani G, Nagaraju GP. CD44/ PD-L1-mediated networks in drug resistance and immune evasion of breast cancer stem cells: Promising targets of natural compounds. Int Immunopharmacol, 2024, 138: 112613.
pmid: 38959542 |
[11] |
Ma RS, Bonnefond S, Morshed SA, Latif R, Davies TF. Stemness is derived from thyroid cancer cells. Front Endocrinol (Lausanne), 2014, 5: 114.
pmid: 25076938 |
[12] |
Koren S, Reavie L, Couto JP, De Silva D, Stadler MB, Roloff T, Britschgi A, Eichlisberger T, Kohler H, Aina O, Cardiff RD, Bentires-Alj M. PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature, 2015, 525(7567): 114-118.
pmid: 26266975 |
[13] |
Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D'Alessio AC, Young RA, Weinberg RA. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell, 2013, 154(1): 61-74.
pmid: 23827675 |
[14] |
Landeros N, Castillo I, Pérez-Castro R. Preclinical and clinical trials of new treatment strategies targeting cancer stem cells in subtypes of breast cancer. Cells, 2023, 12(5): 720.
pmid: 36899854 |
[15] |
Zou ZL, Luo TL, Wang XY, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol, 2024, 239(8): e31278.
pmid: 38807378 |
[16] |
Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu SL, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 2007, 1(5): 555-567.
pmid: 18371393 |
[17] |
Ciccone V, Terzuoli E, Donnini S, Giachetti A, Morbidelli L, Ziche M. Stemness marker ALDH1A1 promotes tumor angiogenesis via retinoic acid/HIF- 1α/VEGF signalling in MCF-7 breast cancer cells. J Exp Clin Cancer Res, 2018, 37(1): 311.
pmid: 30541574 |
[18] |
Tang W, Li M, Qi X, Li J. β1,4-Galactosyltransferase V modulates breast cancer stem cells through Wnt/ β-catenin signaling pathway. Cancer Res Treat, 2020, 52(4): 1084-1102.
pmid: 32599982 |
[19] |
Bu JW, Zhang YX, Wu SJ, Li HN, Sun LS, Liu Y, Zhu XD, Qiao XB, Ma QT, Liu C, Niu N, Xue JQ, Chen GL, Yang YL, Liu CG. KK-LC-1 as a therapeutic target to eliminate ALDH+ stem cells in triple negative breast cancer. Nat Commun, 2023, 14(1): 2602.
pmid: 37147285 |
[20] |
Verigos J, Kordias D, Papadaki S, Magklara A. Transcriptional profiling of tumorspheres reveals TRPM4 as a novel stemness regulator in breast cancer. Biomedicines, 2021, 9(10): 1368.
pmid: 34680485 |
[21] |
Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer, 2009, 9(9): 631-643.
pmid: 19701242 |
[22] |
Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell, 2012, 48(2): 158-167.
pmid: 23102266 |
[23] |
Liu Y, Choi DS, Sheng JT, Ensor JE, Liang DH, Rodriguez-Aguayo C, Polley A, Benz S, Elemento O, Verma A, Cong Y, Wong H, Qian W, Li Z, Granados- Principal S, Lopez-Berestein G, Landis MD, Rosato RR, Dave B, Wong S, Marchetti D, Sood AK, Chang JC. HN1L promotes triple-negative breast cancer stem cells through LEPR-STAT3 pathway. Stem Cell Rep, 2018, 10(1): 212-227.
pmid: 29249663 |
[24] |
Zhu T, Zheng JY, Zhuo W, Pan PH, Li M, Zhang W, Zhou HH, Gao Y, Li X, Liu ZQ. ETV4 promotes breast cancer cell stemness by activating glycolysis and CXCR4-mediated sonic Hedgehog signaling. Cell Death Discov, 2021, 7(1): 126.
pmid: 34052833 |
[25] |
Liu SL, Cong Y, Wang D, Sun Y, Deng L, Liu YJ, Martin-Trevino R, Shang L, McDermott SP, Landis MD, Hong S, Adams A, D'Angelo R, Ginestier C, Charafe- Jauffret E, Clouthier SG, Birnbaum D, Wong ST, Zhan M, Chang JC, Wicha MS. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep, 2013, 2(1): 78-91.
pmid: 24511467 |
[26] |
Luo M, Shang L, Brooks MD, Jiagge E, Zhu YY, Buschhaus JM, Conley S, Fath MA, Davis A, Gheordunescu E, Wang YF, Harouaka R, Lozier A, Triner D, McDermott S, Merajver SD, Luker GD, Spitz DR, Wicha MS. Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab, 2018, 28(1): 69-86.
pmid: 29972798 |
[27] |
De Angelis ML, Francescangeli F, La Torre F, Zeuner A. Stem cell plasticity and dormancy in the development of cancer therapy resistance. Front Oncol, 2019, 9: 626.
pmid: 31355143 |
[28] |
La Belle Flynn A, Calhoun BC, Sharma A, Chang JC, Almasan A, Schiemann WP. Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression. Nat Commun, 2019, 10(1): 3668.
pmid: 31413316 |
[29] |
Payne KK, Manjili MH. Adaptive immune responses associated with breast cancer relapse. Arch Immunol Ther Exp (Warsz), 2012, 60(5): 345-350.
pmid: 22911133 |
[30] |
Momeny M, Tienhaara M, Sharma M, Chakroborty D, Varjus R, Takala I, Merisaari J, Padzik A, Vogt A, Paatero I, Elenius K, Laajala TD, Kurppa KJ, Westermarck J. DUSP6 inhibition overcomes neuregulin/ HER3-driven therapy tolerance in HER2+ breast cancer. EMBO Mol Med, 2024, 16(7): 1603-1629.
pmid: 38886591 |
[31] |
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 2011, 333(6047): 1300-1303.
pmid: 21778364 |
[32] |
Liu WZ, Wu GH, Xiong F, Chen YJ. Advances in the DNA methylation hydroxylase TET1. Biomark Res, 2021, 9(1): 76.
pmid: 34656178 |
[33] |
Xiang LS, Semenza GL. Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy. Adv Cancer Res, 2019, 141: 175-212.
pmid: 30691683 |
[34] |
Celià-Terrassa T, Kang YB. How important is EMT for cancer metastasis? PLoS Biol, 2024, 22(2): e3002487.
pmid: 38324529 |
[35] |
Tilghman SL, Townley I, Zhong Q, Carriere PP, Zou J, Llopis SD, Preyan LC, Williams CC, Skripnikova E, Bratton MR, Zhang Q, Wang GD. Proteomic signatures of acquired letrozole resistance in breast cancer: suppressed estrogen signaling and increased cell motility and invasiveness. Mol Cell Proteomics, 2013, 12(9): 2440-2455.
pmid: 23704778 |
[36] |
Duru N, Fan M, Candas D, Menaa C, Liu HC, Nantajit D, Wen YF, Xiao K, Eldridge A, Chromy BA, Li SY, Spitz DR, Lam KS, Wicha MS, Li JJ. HER2-associated radioresistance of breast cancer stem cells isolated from HER2-negative breast cancer cells. Clin Cancer Res, 2012, 18(24): 6634-6647.
pmid: 23091114 |
[37] |
Liu XX, Xie PL, Hao N, Zhang M, Liu Y, Liu PJ, Semenza GL, He JJ, Zhang HM. HIF-1-regulated expression of calreticulin promotes breast tumorigenesis and progression through Wnt/β-catenin pathway activation. Proc Natl Acad Sci USA, 2021, 118(44): e2109144118.
pmid: 34706936 |
[38] |
Lu HQ, Lyu YJ, Tran L, Lan J, Xie YYR, Yang YK, Murugan NL, Wang YYJ, Semenza GL. HIF-1 recruits NANOG as a coactivator for TERT gene transcription in hypoxic breast cancer stem cells. Cell Rep, 2021, 36(13): 109757.
pmid: 34592152 |
[39] |
Oliphant MUJ, Vincent MY, Galbraith MD, Pandey A, Zaberezhnyy V, Rudra P, Johnson KR, Costello JC, Ghosh D, DeGregori J, Espinosa JM, Ford HL. SIX2 mediates late-stage metastasis via direct regulation of SOX2 and induction of a cancer stem cell program. Cancer Res, 2019, 79(4): 720-734.
pmid: 30606720 |
[40] |
Peng XL, Dong HN, Zhang LX, Liu SL. Role of cancer stem cell ecosystem on breast cancer metastasis and related mouse models. Zool Res, 2024, 45(3): 506-517.
pmid: 38682432 |
[41] |
Gallardo-Pérez JC, Marín-Hernández A, Moreno-Sánchez R, Rodríguez-Enríquez S. HPI/AMF inhibition halts the development of the aggressive phenotype of breast cancer stem cells. Biochim Biophys Acta Mol Cell Res, 2017, 1864(10): 1679-1690.
pmid: 28648642 |
[42] |
Hu J, Li G, Zhang PY, Zhuang XQ, Hu GH. A CD44v+ subpopulation of breast cancer stem-like cells with enhanced lung metastasis capacity. Cell Death Dis, 2017, 8(3): e2679.
pmid: 28300837 |
[43] |
Starenki D, Sosonkina N, Hong SK, Lloyd RV, Park JI. Mortalin (GRP75/HSPA9) promotes survival and proliferation of thyroid carcinoma cells. Int J Mol Sci, 2019, 20(9): 2069.
pmid: 31027376 |
[44] |
Wei B, Cao J, Tian JH, Yu CY, Huang Q, Yu JJ, Ma R, Wang J, Xu F, Wang LB. Mortalin maintains breast cancer stem cells stemness via activation of Wnt/ GSK3β/β-catenin signaling pathway. Am J Cancer Res, 2021, 11(6): 2696-2716.
pmid: 34249423 |
[45] |
Benard O, Qian X, Liang HZ, Ren ZE, Suyama K, Norton L, Hazan RB. p21CIP1 promotes mammary cancer-initiating cells via activation of Wnt/TCF1/ CyclinD1 signaling. Mol Cancer Res, 2019, 17(7): 1571-1581.
pmid: 30967481 |
[46] |
Gener P, Rafael D, Seras-Franzoso J, Perez A, Pindado LA, Casas G, Arango D, Fernández Y, Díaz-Riascos ZV, Abasolo I, Schwartz S. Pivotal role of AKT2 during dynamic phenotypic change of breast cancer stem cells. Cancers (Basel), 2019, 11(8): 1058.
pmid: 31357505 |
[47] |
Rosenthal DT, Zhang J, Bao LW, Zhu L, Wu ZF, Toy K, Kleer CG, Merajver SD. RhoC impacts the metastatic potential and abundance of breast cancer stem cells. PLoS One, 2012, 7(7): e40979.
pmid: 22911725 |
[48] |
Gagliardi M, Pitner MK, Park J, Xie XM, Saso H, Larson RA, Sammons RM, Chen HQ, Wei CM, Masuda H, Chauhan G, Kondo K, Tripathy D, Ueno NT, Dalby KN, Debeb BG, Bartholomeusz C. Differential functions of ERK1 and ERK2 in lung metastasis processes in triple-negative breast cancer. Sci Rep, 2020, 10(1): 8537.
pmid: 32444778 |
[49] |
Shi L, Tang XL, Qian MX, Liu ZJ, Meng FB, Fu L, Wang ZM, Zhu WG, Huang JD, Zhou ZJ, Liu BH. A SIRT1-centered circuitry regulates breast cancer stemness and metastasis. Oncogene, 2018, 37(49): 6299-6315.
pmid: 30038266 |
[50] |
Nguyen K, Yan YQ, Yuan B, Dasgupta A, Sun J, Mu H, Do KA, Ueno NT, Andreeff M, Battula VL. ST8SIA1 regulates tumor growth and metastasis in TNBC by activating the FAK-AKT-mTOR signaling pathway. Mol Cancer Ther, 2018, 17(12): 2689-2701.
pmid: 30237308 |
[51] |
Gong ZC, Li AC, Ding JC, Li Q, Zhang L, Li YP, Meng Z, Chen F, Huang JL, Zhou DW, Hu RG, Ye J, Liu W, You H. OTUD7B deubiquitinates LSD1 to govern its binding partner specificity, homeostasis, and breast cancer metastasis. Adv Sci (Weinh), 2021, 8(15): e2004504.
pmid: 34050636 |
[52] |
Yang ZT, Zhang CY, Liu XZ, Che N, Feng Y, Xuan YH. SETD5 regulates glycolysis in breast cancer stem-like cells and fuels tumor growth. Am J Pathol, 2022, 192(4): 712-721.
pmid: 35063407 |
[53] |
Liu YJ, Zhang PY, Wu QY, Fang HQ, Wang Y, Xiao YS, Cong M, Wang TT, He YF, Ma CX, Tian P, Liang YJ, Qin LX, Yang QC, Yang QF, Liao LJ, Hu GH. Long non-coding RNA NR2F1-AS1 induces breast cancer lung metastatic dormancy by regulating NR2F1 and ΔNp63. Nat Commun, 2021, 12(1): 5232.
pmid: 34475402 |
[54] |
Pathak Y, Camps I, Mishra A, Tripathi V. Targeting notch signaling pathway in breast cancer stem cells through drug repurposing approach. Mol Divers, 2023, 27(6): 2431-2440.
pmid: 36376717 |
[55] |
Baker A, Wyatt D, Bocchetta M, Li J, Filipovic A, Green A, Peiffer DS, Fuqua S, Miele L, Albain KS, Osipo C. Notch-1-PTEN-ERK1/2 signaling axis promotes HER2+ breast cancer cell proliferation and stem cell survival. Oncogene, 2018, 37(33): 4489-4504.
pmid: 29743588 |
[56] |
Kumar S, Nandi A, Singh S, Regulapati R, Li N, Tobias JW, Siebel CW, Blanco MA, Klein-Szanto AJ, Lengner C, Welm AL, Kang YB, Chakrabarti R. Dll1+ quiescent tumor stem cells drive chemoresistance in breast cancer through NF-κB survival pathway. Nat Commun, 2021, 12(1): 432.
pmid: 35798701 |
[57] |
Wang LL, Wan XY, Liu CQ, Zheng FM. NDR1 increases NOTCH1 signaling activity by impairing Fbw7 mediated NICD degradation to enhance breast cancer stem cell properties. Mol Med, 2022, 28(1): 49.
pmid: 35508987 |
[58] |
Gelsomino L, Panza S, Giordano C, Barone I, Gu G, Spina E, Catalano S, Fuqua S, Andò S. Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines. Cancer Lett, 2018, 428: 12-20.
pmid: 29702197 |
[59] |
Zhou L, Wang D, Sheng DD, Xu JH, Chen WL, Qin YY, Du RK, Yang XL, He XY, Xie N, Liu SL, Zhang LX. NOTCH4 maintains quiescent mesenchymal-like breast cancer stem cells via transcriptionally activating SLUG and GAS1 in triple-negative breast cancer. Theranostics, 2020, 10(5): 2405-2421.
pmid: 32104513 |
[60] |
Boyle ST, Gieniec KA, Gregor CE, Faulkner JW, McColl SR, Kochetkova M. Interplay between CCR7 and Notch1 axes promotes stemness in MMTV-PyMT mammary cancer cells. Mol Cancer, 2017, 16(1): 19.
pmid: 28137279 |
[61] |
Chimento A, D'Amico M, Pezzi V, De Amicis F. Notch signaling in breast tumor microenvironment as mediator of drug resistance. Int J Mol Sci, 2022, 23(11): 6296.
pmid: 35682974 |
[62] |
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng HY, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer, 2023, 22(1): 138.
pmid: 37596643 |
[63] |
Zhu KR, Wu YQ, He P, Fan Y, Zhong XR, Zheng H, Luo T. PI3K/AKT/mTOR-targeted therapy for breast cancer. Cells, 2022, 11(16): 2508.
pmid: 36010585 |
[64] |
Han ML, Liu MR, Wang YM, Chen X, Xu JL, Sun Y, Zhao LY, Qu HB, Fan YM, Wu CY. Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS One, 2012, 7(6): e39520.
pmid: 22761812 |
[65] |
Ojo D, Wei FX, Liu Y, Wang EL, Zhang HD, Lin XZ, Wong N, Bane A, Tang DM. Factors promoting tamoxifen resistance in breast cancer via stimulating breast cancer stem cell expansion. Curr Med Chem, 2015, 22(19): 2360-2374.
pmid: 25882671 |
[66] |
Solzak JP, Atale RV, Hancock BA, Sinn AL, Pollok KE, Jones DR, Radovich M. Dual PI3K and Wnt pathway inhibition is a synergistic combination against triple negative breast cancer. NPJ Breast Cancer, 2017, 3: 17.
pmid: 28649657 |
[67] |
Xu F, Wang JL, Zhen SM, Duan YQ, Li QS, Liu LH. C1ql4 regulates breast cancer cell stemness and epithelial-mesenchymal transition through PI3K/AKT/ NF-κB signaling pathway. Front Oncol, 2023, 13: 1192482.
pmid: 37324011 |
[68] |
Tabolacci C, De Martino A, Mischiati C, Feriotto G, Beninati S. The role of tissue transglutaminase in cancer cell initiation, survival and progression. Med Sci (Basel), 2019, 7(2): 19.
pmid: 30691081 |
[69] |
Willmer T, Cooper A, Peres J, Omar R, Prince S. The T-Box transcription factor 3 in development and cancer. Biosci Trends, 2017, 11(3): 254-266.
pmid: 28579578 |
[70] |
Dong G, Ma G, Wu R, Liu JM, Liu MC, Gao A, Li XW, A J, Liu XY, Zhang ZQ, Zhang BT, Fu LY, Dong JT. ZFHX3 promotes the proliferation and tumor growth of ER-Positive breast cancer cells likely by enhancing stem-like features and MYC and TBX3 transcription. Cancers (Basel), 2020, 12(11): 3415.
pmid: 33217982 |
[71] |
Siddharth S, Goutam K, Das S, Nayak A, Nayak D, Sethy C, Wyatt MD, Kundu CN. Nectin-4 is a breast cancer stem cell marker that induces WNT/β-catenin signaling via Pi3k/Akt axis. Int J Biochem Cell Biol, 2017, 89: 85-94.
pmid: 28600142 |
[72] |
Liu RJ, Yu Y, Wang QY, Zhao QX, Yao Y, Sun MX, Zhuang J, Sun CG, Qi YF. Interactions between hedgehog signaling pathway and the complex tumor microenvironment in breast cancer: current knowledge and therapeutic promises. Cell Commun Signal, 2024, 22(1): 432.
pmid: 39252010 |
[73] |
Goel HL, Pursell B, Chang C, Shaw LM, Mao JH, Simin K, Kumar P, Vander Kooi CW, Shultz LD, Greiner DL, Norum JH, Toftgard R, Kuperwasser C, Mercurio AM. GLI1 regulates a novel neuropilin-2/α6β1 integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Mol Med, 2013, 5(4): 488-508.
pmid: 23436775 |
[74] |
He M, Fu YZ, Yan YY, Xiao QH, Wu HZ, Yao WF, Zhao HS, Zhao L, Jiang Q, Yu ZJ, Jin F, Mi XY, Wang EH, Cui ZS, Fu LW, Chen JJ, Wei MJ. The Hedgehog signalling pathway mediates drug response of MCF-7 mammosphere cells in breast cancer patients. Clin Sci (Lond), 2015, 129(9): 809-822.
pmid: 26201092 |
[75] | Yan X, Guo Y, Sun DL, Wu N, Jin Y. Drug resistance mechanism of anti-angiogenesis therapy in tumor. Hereditas(Beijing), 2024, 46(11): 911-919. |
闫旭, 郭影, 孙冬琳, 吴楠, 金焰. 肿瘤抗血管生成治疗耐药机制. 遗传, 2024, 46(11): 911-919. | |
[76] |
Cong G, Zhu XY, Chen XR, Chen H, Chong W. Mechanisms and therapeutic potential of the hedgehog signaling pathway in cancer. Cell Death Discov, 2025, 11(1): 40.
pmid: 39900571 |
[77] |
Li MJ, Guo TT, Lin JY, Huang X, Ke QD, Wu YJ, Fang CP, Hu CX. Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway. J Ethnopharmacol, 2022, 283: 114689.
pmid: 34592340 |
[78] |
Ryan AL, Northcote-Smith J, McKeon A, Roe A, O'Dowd P, Twamley B, Chonghaile TN, Suntharalingam K, Griffith DM. A trans-Pt(II) hedgehog pathway inhibitor complex with cytotoxicity towards breast cancer stem cells and triple negative breast cancer cells. Dalton Trans, 2022, 51(47): 18127-18135.
pmid: 36382541 |
[79] |
Huang PD, Chen AA, He WY, Li Z, Zhang GL, Liu Z, Liu G, Liu XT, He SL, Xiao G, Huang FC, Stenvang J, Brünner N, Hong A, Wang J. BMP-2 induces EMT and breast cancer stemness through Rb and CD44. Cell Death Discov, 2017, 3: 17039.
pmid: 28725489 |
[80] |
Bach DH, Park HJ, Lee SK. The dual role of bone morphogenetic proteins in cancer. Mol Ther Oncolytics, 2018, 8: 1-13.
pmid: 29234727 |
[81] |
Jin H, Pi J, Huang X, Huang FC, Shao WX, Li SP, Chen Y, Cai JY. BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation. Appl Microbiol Biotechnol, 2012, 93(4): 1715-1723.
pmid: 22270235 |
[82] |
Clément F, Xu XY, Donini CF, Clément A, Omarjee S, Delay E, Treilleux I, Fervers B, Le Romancer M, Cohen PA, Maguer-Satta V. Long-term exposure to bisphenol A or benzo(a)pyrene alters the fate of human mammary epithelial stem cells in response to BMP2 and BMP4, by pre-activating BMP signaling. Cell Death Differ, 2017, 24(1): 155-166.
pmid: 27740625 |
[83] |
Zeng Z, Fu MY, Hu Y, Wei YQ, Wei XW, Luo M. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer, 2023, 22(1): 172.
pmid: 37853437 |
[84] |
Falcomatà C, Bärthel S, Schneider G, Rad R, Schmidt- Supprian M, Saur D. Context-specific determinants of the immunosuppressive tumor microenvironment in pancreatic cancer. Cancer Discov, 2023, 13(2): 278-297.
pmid: 36622087 |
[85] |
Mierke CT. The fundamental role of mechanical properties in the progression of cancer disease and inflammation. Rep Prog Phys, 2014, 77(7): 076602.
pmid: 25006689 |
[86] |
Shah L, Latif A, Williams KJ, Tirella A. Role of stiffness and physico-chemical properties of tumour microenvironment on breast cancer cell stemness. Acta Biomater, 2022, 152: 273-289.
pmid: 36087866 |
[87] | Chao Y, Liu Z. Biomaterials tools to modulate the tumour microenvironment in immunotherapy. Nat Rev Bioeng, 2023, 1(2): 125-138. |
[88] |
Seruga B, Zhang HB, Bernstein LJ, Tannock IF. Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer, 2008, 8(11): 887-899.
pmid: 18846100 |
[89] |
Chen WL, Qin YY, Liu SL. Cytokines, breast cancer stem cells (BCSCs) and chemoresistance. Clin Transl Med, 2018, 7(1): 27.
pmid: 30175384 |
[90] |
Liu S, Lee JS, Jie CF, Park MH, Iwakura Y, Patel Y, Soni M, Reisman D, Chen HX. HER2 overexpression triggers an IL1α proinflammatory circuit to drive tumorigenesis and promote chemotherapy resistance. Cancer Res, 2018, 78(8): 2040-2051.
pmid: 29382706 |
[91] |
Singh JK, Simões BM, Howell SJ, Farnie G, Clarke RB. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Res, 2013, 15(4): 210.
pmid: 24041156 |
[92] |
Wu MM, Zhang X, Zhang WJ, Yan LL, Liu XT, Zhang M, Pan YY, Lobie PE, Han XH, Zhu T. Paracrine secretion of IL8 by breast cancer stem cells promotes therapeutic resistance and metastasis of the bulk tumor cells. Cell Commun Signal, 2023, 21(1): 59.
pmid: 36915147 |
[93] |
Zhang F, Li P, Liu S, Yang MQ, Zeng SS, Deng JJ, Chen DY, Yi YM, Liu H. β-catenin-CCL2 feedback loop mediates crosstalk between cancer cells and macrophages that regulates breast cancer stem cells. Oncogene, 2021, 40(39): 5854-5865.
pmid: 34345015 |
[94] |
Kong LX, Guo SF, Liu CF, Zhao YL, Feng C, Liu YS, Wang T, Li CJ. Overexpression of SDF-1 activates the NF-κB pathway to induce epithelial to mesenchymal transition and cancer stem cell-like phenotypes of breast cancer cells. Int J Oncol, 2016, 48(3): 1085-1094.
pmid: 26782945 |
[95] |
Shan SM, Lv Q, Zhao YL, Liu CF, Sun YY, Xi KM, Xiao JY, Li CJ. Wnt/β-catenin pathway is required for epithelial to mesenchymal transition in CXCL12 over expressed breast cancer cells. Int J Clin Exp Pathol, 2015, 8(10): 12357-12367.
pmid: 26722422 |
[96] |
Zhang R, Dong MX, Tu JCL, Li FK, Deng QD, Xu JH, He XY, Ding JJ, Xia J, Sheng DD, Chang ZX, Ma W, Dong HN, Zhang Y, Zhang LX, Zhang L, Liu SL. PMN-MDSCs modulated by CCL20 from cancer cells promoted breast cancer cell stemness through CXCL2- CXCR2 pathway. Signal Transduct Target Ther, 2023, 8(1): 97.
pmid: 36859354 |
[97] |
Sheng DD, Ma W, Zhang R, Zhou L, Deng QD, Tu JCL, Chen WL, Zhang FC, Gao NL, Dong MX, Wang D, Li FK, Liu Y, He XY, Duan SZ, Zhang LX, Liu T, Liu SL. Ccl3 enhances docetaxel chemosensitivity in breast cancer by triggering proinflammatory macrophage polarization. J Immunother Cancer, 2022, 10(5): e003793.
pmid: 35613826 |
[98] |
Ghirelli C, Reyal F, Jeanmougin M, Zollinger R, Sirven P, Michea P, Caux C, Bendriss-Vermare N, Donnadieu MH, Caly M, Fourchotte V, Vincent-Salomon A, Sigal-Zafrani B, Sastre-Garau X, Soumelis V. Breast cancer cell-derived GM-CSF licenses regulatory Th2 induction by plasmacytoid predendritic cells in aggressive disease subtypes. Cancer Res, 2015, 75(14): 2775-2787.
pmid: 25977333 |
[99] |
Ciummo SL, D'Antonio L, Sorrentino C, Fieni C, Lanuti P, Stassi G, Todaro M, Di Carlo E. The C-X-C motif chemokine ligand 1 sustains breast cancer stem cell self-renewal and promotes tumor progression and immune escape programs. Front Cell Dev Biol, 2021, 9: 689286.
pmid: 34195201 |
[100] |
Woosley AN, Dalton AC, Hussey GS, Howley BV, Mohanty BK, Grelet S, Dincman T, Bloos S, Olsen SK, Howe PH. TGFβ promotes breast cancer stem cell self-renewal through an ILEI/LIFR signaling axis. Oncogene, 2019, 38(20): 3794-3811.
pmid: 30692635 |
[101] |
Sappino AP, Schürch W, Gabbiani G. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest, 1990, 63(2): 144-161.
pmid: 2116562 |
[102] |
Plaks V, Kong NW, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell, 2015, 16(3): 225-238.
pmid: 25748930 |
[103] |
Narasimhan H, Ferraro F, Bleilevens A, Weiskirchen R, Stickeler E, Maurer J. Tumor necrosis factor-α (TNFα) stimulate triple-negative breast cancer stem cells to promote intratumoral invasion and neovasculogenesis in the liver of a xenograft model. Biology (Basel), 2022, 11(10): 1481.
pmid: 36290384 |
[104] |
Liu WJ, Lu XQ, Shi PG, Yang GX, Zhou ZM, Li W, Mao XY, Jiang DW, Chen CS. TNF-α increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-κB pathway. Sci Rep, 2020, 10(1): 1804.
pmid: 32019974 |
[105] |
Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol, 2019, 234(6): 8381-8395.
pmid: 30417375 |
[106] |
Chen XM, Song EW. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov, 2019, 18(2): 99-115.
pmid: 30470818 |
[107] |
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, Sivajothi S, Armstrong TD, Engle DD, Yu KH, Hao Y, Wolfgang CL, Park Y, Preall J, Jaffee EM, Califano A, Robson P, Tuveson DA. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov, 2019, 9(8): 1102-1123.
pmid: 31197017 |
[108] |
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial- mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res, 2022, 186: 106535.
pmid: 36334877 |
[109] |
Huang H, Wang C, Liu F, Li HZ, Peng G, Gao X, Dong KQ, Wang HR, Kong DP, Qu M, Dai LH, Wang KJ, Zhou Z, Yang J, Yang ZY, Cheng YQ, Tian QQ, Liu D, Xu CL, Xu DF, Cui XG, Sun YH. Reciprocal network between cancer stem-like cells and macrophages facilitates the progression and androgen deprivation therapy resistance of prostate cancer. Clin Cancer Res, 2018, 24(18): 4612-4626.
pmid: 29691294 |
[110] |
Mohamed HT, El-Sharkawy AA, El-Shinawi M, Schneider RJ, Mohamed MM. Inflammatory breast cancer: the secretome of HCMV+ tumor-associated macrophages enhances proliferation, invasion, colony formation, and expression of cancer stem cell markers. Front Oncol, 2022, 12: 899622.
pmid: 35847899 |
[111] |
Shi YY. Regulatory mechanisms of PD-L1 expression in cancer cells. Cancer Immunol Immunother, 2018, 67(10): 1481-1489.
pmid: 30120503 |
[112] |
Alshetaiwi H, Pervolarakis N, McIntyre LL, Ma D, Nguyen Q, Rath JA, Nee K, Hernandez G, Evans K, Torosian L, Silva A, Walsh C, Kessenbrock K. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci Immunol, 2020, 5(44): eaay6017.
pmid: 32086381 |
[113] |
Peng DJ, Tanikawa T, Li W, Zhao LL, Vatan L, Szeliga W, Wan SS, Wei S, Wang Y, Liu Y, Staroslawska E, Szubstarski F, Rolinski J, Grywalska E, Stanisławek A, Polkowski W, Kurylcio A, Kleer C, Chang AE, Wicha M, Sabel M, Zou WP, Kryczek I. Myeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross- talk signaling. Cancer Res, 2016, 76(11): 3156-3165.
pmid: 27197152 |
[114] |
Long W, Chen JJ, Gao C, Lin Z, Xie XB, Dai HL. Brief review on the roles of neutrophils in cancer development. J Leukoc Biol, 2021, 109(2): 407-413.
pmid: 32970873 |
[115] |
Xiao YS, Cong M, Li JT, He DS, Wu QY, Tian P, Wang Y, Yang SX, Liang CX, Liang YJ, Wen JL, Liu YJ, Luo WQ, Lv XZ, He YF, Cheng DD, Zhou TH, Zhao WJ, Zhang PY, Zhang X, Xiao YC, Qian YC, Wang HX, Gao Q, Yang QC, Yang QF, Hu GH. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell, 2021, 39(3): 423-437.e7.
pmid: 33450198 |
[116] |
Patrawala L, Calhoun T, Schneider-Broussard R, Zhou JJ, Claypool K, Tang DG. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res, 2005, 65(14): 6207-6219.
pmid: 16024622 |
[117] |
Andugulapati SB, Sundararaman A, Lahiry M, Rangarajan A. AMP-activated protein kinase promotes breast cancer stemness and drug resistance. Dis Model Mech, 2022, 15(6): dmm049203.
pmid: 35195687 |
[118] |
Chen FH, Gurler SB, Novo D, Selli C, Alferez DG, Eroglu S, Pavlou K, Zhang JW, Sims AH, Humphreys NE, Adamson A, Campbell A, Sansom OJ, Tournier C, Clarke RB, Brennan K, Streuli CH, Ucar A. RAC1B function is essential for breast cancer stem cell maintenance and chemoresistance of breast tumor cells. Oncogene, 2023, 42(9): 679-692.
pmid: 36599922 |
[119] |
Zhao LN, Qiu T, Jiang DW, Xu HB, Zou L, Yang Q, Chen CS, Jiao BW. SGCE promotes breast cancer stem cells by stabilizing EGFR. Adv Sci (Weinh), 2020, 7(14): 1903700.
pmid: 32714745 |
[120] |
Qiu T, Hou L, Zhao LN, Wang XY, Zhou ZM, Yang CY, Zhang HF, Jiang DW, Jiao BW, Chen CS. SGCE promotes breast cancer stemness by promoting the transcription of FGF-BP1 by Sp1. J Biol Chem, 2023, 299(11): 105351.
pmid: 37838174 |
[121] |
Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG, Bundred NJ. Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst, 2007, 99(8): 616-627.
pmid: 17440163 |
[122] |
Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J, Fearon ER, Weiss SJ. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol, 2006, 8(12): 1398-1406.
pmid: 17072303 |
[123] |
Creighton CJ, Li XX, Landis M, Dixon JM, Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A, Herschkowitz JI, Fan C, Zhang XM, He XP, Pavlick A, Gutierrez MC, Renshaw L, Larionov AA, Faratian D, Hilsenbeck SG, Perou CM, Lewis MT, Rosen JM, Chang JC. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA, 2009, 106(33): 13820-13825.
pmid: 19666588 |
[124] |
Li QQ, Xu JD, Wang WJ, Cao XX, Chen Q, Tang F, Chen ZQ, Liu XP, Xu ZD. Twist1-mediated adriamycin- induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clin Cancer Res, 2009, 15(8): 2657-2665.
pmid: 19336515 |
[125] |
Wu MM, Zhang X, Zhang WJ, Chiou YS, Qian WC, Liu XT, Zhang M, Yan H, Li SL, Li T, Han XH, Qian PX, Liu SL, Pan YY, Lobie PE, Zhu T. Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis. Nat Commun, 2022, 13(1): 1371.
pmid: 35296660 |
[126] |
Luo MW, Bao L, Xue YY, Zhu M, Kumar A, Xing C, Wang JE, Wang YF, Luo WB. ZMYND8 protects breast cancer stem cells against oxidative stress and ferroptosis through activation of NRF2. J Clin Invest, 2024, 134(6): e171166.
pmid: 38488001 |
[127] |
Wang TY, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue CY, Zhang CY, Lifshitz V, Song J, Yuan Y, Somlo G, Jandial R, Ann D, Hanash S, Jove R, Yu H. JAK/ STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab, 2018, 27(1): 136-150.e5.
pmid: 29249690 |
[128] |
Raza S, Siddiqui JA, Srivastava A, Chattopadhyay N, Sinha RA, Chakravarti B. Autophagy as a therapeutic target in breast tumors: the cancer stem cell perspective. Autophagy Rep, 2024, 3(1): 27694127.2024.2358648.
pmid: 39006309 |
[129] |
Yeo SK, Wen J, Chen S, Guan JL. Autophagy differrentially regulates distinct breast cancer stem-like cells in murine models via EGFR/Stat3 and Tgfβ/Smad signaling. Cancer Res, 2016, 76(11): 3397-3410.
pmid: 27197172 |
[130] |
Li D, Guo XL, Yang K, Yang YN, Zhou WL, Huang Y, Liang X, Su JH, Jiang L, Li J, Fu MR, He HX, Yang JR, Shi HS, Yang HS, Tong AP, Chen NY, Hu JK, Xu Q, Wei YQ, Wang W. EpCAM-targeting CAR-T cell immunotherapy is safe and efficacious for epithelial tumors. Sci Adv, 2023, 9(48): eadg9721.
pmid: 38039357 |
[131] |
Tang Y, Jiang MY, Chen AP, Qu WD, Han X, Zuo JB, Xu G, Song YX, Chen C, Ke XX. Porcupine inhibitor LGK-974 inhibits Wnt/β‑catenin signaling and modifies tumor-associated macrophages resulting in inhibition of the malignant behaviors of non-small cell lung cancer cells. Mol Med Rep, 2021, 24(2): 550.
pmid: 34080032 |
[132] |
Gatti-Mays ME, Balko JM, Gameiro SR, Bear HD, Prabhakaran S, Fukui J, Disis ML, Nanda R, Gulley JL, Kalinsky K, Sater HA, Sparano JA, Cescon D, Page DB, McArthur H, Adams S, Mittendorf EA. If we build it they will come: targeting the immune response to breast cancer. NPJ Breast Cancer, 2019, 5: 37.
pmid: 31700993 |
[133] |
Romaniuk-Drapała A, Totoń E, Taube M, Idzik M, Rubiś B, Lisiak N. Breast cancer stem cells and tumor heterogeneity: characteristics and therapeutic strategies. Cancers (Basel), 2024, 16(13): 2481.
pmid: 39001543 |
[1] | 安梦婷, 郭冠麟, 吴杰, 孙文靖, 贾学渊. 基于生物信息学分析胃癌双微体中增强子的调控机制[J]. 遗传, 2025, 47(5): 558-572. |
[2] | 张译文, 黄琴, 吴艳芸, 孙月, 韦永龙. LIN28A/B在肿瘤发生发展中的作用研究进展[J]. 遗传, 2024, 46(6): 452-465. |
[3] | 闫旭, 郭影, 孙冬琳, 吴楠, 金焰. 肿瘤抗血管生成治疗耐药机制[J]. 遗传, 2024, 46(11): 911-919. |
[4] | 章子怡, 王棨临, 张俊有, 段迎迎, 刘家欣, 刘赵硕, 李春燕. 多组学数据驱动的机器学习模型在乳腺癌生存及治疗响应预测中的应用[J]. 遗传, 2024, 46(10): 820-832. |
[5] | 万羽鑫, 朱欣雨, 赵宇, 孙娜, 江天彤妃, 徐娟. 计算解析异常代谢对乳腺癌微环境重塑的调控机制[J]. 遗传, 2024, 46(10): 871-885. |
[6] | 严程浩, 白韦钰, 张智猛, 沈俊岭, 王友军, 孙建伟. STIM1在肿瘤发生及转移中的研究进展[J]. 遗传, 2023, 45(5): 395-408. |
[7] | 马春辉, 胡海旭, 张丽娟, 刘毅, 刘天懿. 用于循环肿瘤细胞定量分析的CK19数字PCR检测方法的建立及性能验证[J]. 遗传, 2023, 45(3): 250-260. |
[8] | 常栋, 刘享享, 刘睿, 孙建伟. FSCN1在乳腺癌发生发展中的作用及其调控机制[J]. 遗传, 2023, 45(2): 115-127. |
[9] | 张强, 顾明亮. 单细胞测序技术及其在乳腺癌研究中的应用[J]. 遗传, 2020, 42(3): 250-268. |
[10] | 王昕源, 张雨, 杨楠, 程禾, 孙玉洁. DNMT3a通过提升基因内部甲基化介导紫杉醇诱导的LINE-1异常表达[J]. 遗传, 2020, 42(1): 100-111. |
[11] | 禹奇超,宋彬,邹轩轩,王岭,刘德权,李波,马昆. 乳腺癌癌旁组织特异性表达基因分析[J]. 遗传, 2019, 41(7): 625-633. |
[12] | 余同露,蔡栋梁,朱根凤,叶晓娟,闵太善,陈红岩,卢大儒,陈浩明. CSN4基因干扰对乳腺癌MDA-MB-231细胞增殖和凋亡的影响[J]. 遗传, 2019, 41(4): 318-326. |
[13] | 程香荣,胡兴琳,姜琦,黄星卫,王楠,雷蕾. 核糖体DNA转录的表观调控与肿瘤发生[J]. 遗传, 2019, 41(3): 185-192. |
[14] | 姚传波, 周鑫, 陈策实, 雷群英. Hippo信号通路在乳腺癌中的调控机制及作用[J]. 遗传, 2017, 39(7): 617-629. |
[15] | 李泰明, 蓝文俊, 黄灿, 张春, 刘晓玫. 近红外荧光蛋白标记乳腺癌细胞外泌体的构建及鉴定[J]. 遗传, 2016, 38(5): 427-435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: