[1] Dziarmaga A, Quinlan J, Goodyer P. Renal hypoplasia: lessons from Pax2. Pediatr Nephrol, 2006, 21(1): 26-31.[2] Bouchard M, Souabni A, Mandler M, Mandler M, Neubüser A, Busslinger M. Nephric lineage specification by Pax2 and Pax8. Genes Dve, 2002, 16(22): 2958-2970.[3] Grote D, Souabni A, Busslinger M, Bouchard M. Pax2/8-regulated Gata3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development, 2005, 133(1): 53-61.[4] Clarke JC, Pate SR, Raymond RM Jr, Andrew S, Robinson BG, Dressler GR, Brophy PD. Regulation of c-Ret in the developing kidney is responsive to Pax2 gene dosage. Human Mol Genet, 2006, 15(23): 3420-3428.[5] Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, Nigam SK, Aggarwal AK, Maas R, Rose DW, Rosenfeld MG. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature, 2003, 426(6964): 247-254.[6] Sajithlal G, Zou D, Silvius D, Xu PX. Eya1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol, 2005, 284(2): 323-336.[7] Gong KQ, Yallowitz AR, Sun HS, Dressler GR, Wellik DM. A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol, 2007, 27(21): 7661-7668.[8] Dziarmaga A, Hueber PA, Iglesias D, Hache N, Jeffs A, Gendron N, Mackenzie A, Eccles M, Goodyer P. Neuronal apoptosis inhibitory protein is expressed in developing kidney and is regulated by Pax2. Am J Physiol Renal Physiol, 2006, 291(4): F913-F920.[9] Dziarmaga A, Eccles M, Goodyer P. Suppression of ureteric bud apoptosis rescues nephron endowment and adult renal function in Pax2 mutant mice. J Am Soc Nephrol, 2006, 17(6): 1568-1575.[10] Hu MC, Mo R, Bhella S, Wilson CW, Chuang PT, Hui CC, Rosenblum ND. Gli3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis. Development, 2005, 13(3): 569-578.[11] Narlis M, Grote D, Gaitan Y, Boualia SK, bouchard M. Pax2 and Pax8 regulate branching morphogenesis and nephron differentiation in the developing kidney. J Am Soc Nephrol, 2007, 18(4): 1121-1129.[12] Torban E, Dziarmaga A, Iglesias D, Chu LL, Vassilieva T, Little M, Eccles M, Discenza M, Pelletier J, Goodyer P. Pax2 activates WNT4 expression during mammalian kidney development. J Biol Chem, 2005, 281(18): 12705-12712.[13] Pedersen A, Skjong C, Shawlot W. Lim1 is required for nephric duct extension and ureteric bud morphogenesis. Dev Biol, 2005, 288(2): 571-581.[14] Zhang SL, Chen YW, Tran S, Liu F, Nestoridi E, Hébert MJ, Ingelfinger JR. PAX-2 and N-myc regulate epithelial cell proliferation and apoptosis in a positive autocrine feedback loop. Pediatr Nephrol, 2007, 22(6): 813-824.[15] Waters AM, Wu MYJ, Onay T, Scutaru J, Liu J, Lobe CG, Quaggin SE, Piscione TD. Ectopic notch activation in developing podocytes causes glomerulosclerosis. J Am Soc Nephrol, 2008, 19(6): 1139-1157.[16] Gao XB, Chen X, Taglienti M, Rumballe B, Little MH, Kreidberg JA. Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa. Development, 2005, 132(24): 5437-5449.[17] Poladia DP, Kish K, Kutay B, Hains D, Kegg H, Zhao HT Bates CM. Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol, 2006, 291(2): 325-339.[18] Fletcher J, Hu M, Berman Y, Collins F, Grigg J, Mclver M, Jüppner H, Alexander SI. Multicystic dysplastic kidney and variable phenotype in a family with a novel deletion mutation of Pax2. J Am Soc Nephrol, 2005, 16(9): 2754-2761.[19] Martinovic-Bouriel J, Benachi A, Bonnière M, Brahimi N, Esculpav |