遗传 ›› 2021, Vol. 43 ›› Issue (5): 459-472.doi: 10.16288/j.yczz.20-341
林红燕, 王煊, 何聪, 周紫玲, 杨旻恺, 文钟灵, 韩洪苇, 陆桂华, 戚金亮, 杨永华()
收稿日期:
2020-10-10
修回日期:
2021-03-04
出版日期:
2021-05-20
发布日期:
2021-03-26
通讯作者:
杨永华
E-mail:yangyh@nju.edu.cn
作者简介:
林红燕,博士,助理研究员,研究方向:药用植物天然产物化学和分子药理。E-mail: 基金资助:
Hongyan Lin, Xuan Wang, Cong He, Ziling Zhou, Minkai Yang, Zhongling Wen, Hongwei Han, Guihua Lu, Jinliang Qi, Yonghua Yang()
Received:
2020-10-10
Revised:
2021-03-04
Online:
2021-05-20
Published:
2021-03-26
Contact:
Yang Yonghua
E-mail:yangyh@nju.edu.cn
Supported by:
摘要:
紫草为我国传统的重要药用植物资源,其根部代谢产生的紫红色萘醌类天然产物—紫草素及其衍生物,临床上常被用于治疗疮疡和皮肤炎症。数十年来,紫草因具高效的多重生物活性、药理作用、良好的临床疗效、较高的利用价值,引起了国内外研究者的重视与关注,正由于此种原因,其野生植物种质资源常遭到大量采挖,生长环境受到严重威胁。随着植物天然产物的生物合成、分子代谢及其生物技术的发展,药用植物天然产物生物活性功能与药理作用研究手段的不断创新,紫草的生物合成途径和相关调控基因的研究取得了显著的进展,紫草素药理作用及其机制得到深入阐明或解析,极大地推进了紫草素的基础性研究及其临床应用开发的进程。本文从紫草分类、紫草素的结构与组成及其生物合成途径、调控紫草素生物合成代谢的功能相关基因以及紫草素生物活性与药理功能等方面综述了相关研究进展,并对未来可能的发展趋势进行了展望,以期为促进我国重要中药材源的药用天然产物的深度挖掘与开发提供有益参考,推动我国传统中药学的现代化发展。
林红燕, 王煊, 何聪, 周紫玲, 杨旻恺, 文钟灵, 韩洪苇, 陆桂华, 戚金亮, 杨永华. 中药植物紫草天然产物的生物合成及其功能研究进展[J]. 遗传, 2021, 43(5): 459-472.
Hongyan Lin, Xuan Wang, Cong He, Ziling Zhou, Minkai Yang, Zhongling Wen, Hongwei Han, Guihua Lu, Jinliang Qi, Yonghua Yang. Progress on biosynthesis and function of the natural products of Zi Cao as a traditional Chinese medicinal herb[J]. Hereditas(Beijing), 2021, 43(5): 459-472.
图2
紫草素的生物合成途径 根据参考文献[21]修改绘制。 ACTH: acetoacetyl-CoA thiolase,乙酰乙酰辅酶A硫解酶;C4H: cinnamic acid 4-hydroxylase,肉桂酸-4-羟化酶;4-CL: 4-coumarate:CoA ligase,4-香豆酸辅酶A连接酶;CDPMEK: 4-(cytidine 59-diphospho)-2-C-methyl-D-erythritol 2-phosphokinase,4-二磷酸胞苷-2-C-甲基-D-赤藓醇激酶;DXPS: 1-deoxy-D-xylulose-5-phosphate synthase,1-脱氧-D-木酮糖-5-磷酸合酶;DXR: 5-phosphoric acid-deoxyxylulose reductase,5-磷酸-去氧木酮糖还原酶;GDPS: geranyldiphosphate synthase,焦磷酸香叶酯合酶;GHQH: geranylhydroquinone 3’-hydroxylase,香叶基氢醌3ʹ-羟化酶;HDR: 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase,1-羟基-2-甲基-2-(E)-丁烯基-4-焦磷酸还原酶;HDS: 1-hydroxy-2-methyl-2-(E)-butenyl-diphosphate synthase,1-羟基-2-甲基-2-(E)-丁烯基-4-二磷酸合酶;HMGR: hydroxymethylglutaryl-coenzyme A reductase,甲戊二羟酸单酰辅酶A还原酶;HMGS: 3-hydroxy-3-methylglutaryl-CoA synthase,3-羟基-3-甲基-戊二酰辅酶A合成酶;MCT: 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase,2-C-甲基-D-赤藓糖醇4-磷酸胞苷转移酶;MECDPS: 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, 2-C-甲基-D-赤藓糖醇2,4-环焦磷酸合成酶;MVAK: mevalonate 5-phospho kinase,甲羟戊酸5-磷酸激酶;MVDD: mevalonate diphosphate decarboxylase,甲羟戊酸5-焦磷酸脱羧酶;PAL: phenylalanine ammonia-lyase,苯丙氨酸解氨酶;PGT: p-hydroxybenzoate geranyltransferase,对羟基苯甲酸香叶基转移酶;PMVK: 5-phosphomevalonate phosphokinase,磷酸甲羟戊二酸激酶;SAT: shikonin acetyltransferase,紫草宁乙酰转移酶。"
[1] | Wang WC, Liu YL, Zhu GL, Lian YS, Wang JQ, Wang QR (eds). Angiospermae, Dicotyledoneae, Boraginaceae. Flora of China 64(2). Beijing: Science Press, 1989, 1-236. |
王文采、 刘玉兰、 朱格麟、 廉永善、 王镜泉、 王庆瑞(编著). 被子植物门·双子叶植物纲紫草科·中国植物志(第六十四卷 第二分册). 北京: 科学出版社, 1989, 1-236. | |
[2] | Zhu GL, Harald R, Rudolf K. Boraginaceae. In: Flora of China, Vol. 16, Science Press & Missouri Botanical Garden, 1995, 16: 329-427. http://www.iplant.cn/info/Boraginaceae?t=foc. |
[3] | Cohen JI, Litt A, Davis JI . Comparative floral development in Lithospermum(Boraginaceae) and implications for the evolution and development of heterostyly. Am J Bot, 2012,99(5):797-805. |
[4] | Chinese Pharmacopoeia Commission. 2000. Pharmacopoeia of the People's Republic of China (Part I). Beijing: Chemical Industry Press, 280. |
国家药典委员会. 中华人民共和国药典(2000版)(第一部). 北京: 化学工业出版社, 280. | |
[5] | Zhou RH, Duan JA. Plant Chemotaxonomy. Shanghai: Shanghai Scientific & Technical Publishers, 2005, 309-310. |
周荣汉, 段金廒 . 植物化学分类学. 上海: 上海科学技术出版社, 2005, 309-310. | |
[6] | Chinese Pharmacopoeia Commission. 2020. Pharmacopoeia of the People's Republic of China (Part I). Beijing: China Medical Science Press, 355-356. |
国家药典委员会. 中华人民共和国药典(2020版)(第一部). 北京: 中国医药科技出版社, 355-356. | |
[7] | Sagratini G, Cristalli G, Giardinà D, Gioventù G, Maggi F, Ricciutelli M, Vittori S . Alkannin/shikonin mixture from roots of Onosma echioides(L.) L.: Extraction method study and quantification. J Sep Sci, 2008,31(6-7):945-952. |
[8] | Auber RP, Suttiyut T, McCoy RM, Ghaste M, Crook JW, Pendleton AL, Widhalm JR, Wisecaver JH,. Hybrid de novo genome assembly of red gromwell ( Lithospermum erythrorhizon) reveals evolutionary insight into shikonin biosynthesis. Hortic Res, 2020,7:82. |
[9] | Assimopoulou AN, Sturm S, Stuppner H, Papageorgiou VP . Preparative isolation and purification of alkannin/shikonin derivatives from natural products by high-speed counter- current chromatography. Biomed Chromatogr, 2009,23(2):182-198. |
[10] | Albreht A, Vovk I, Simonovska B, Srbinoska M . Identification of shikonin and its ester derivatives from the roots of Echium italicum L. J Chromatogr A, 2009,1216(15):3156-3162. |
[11] | Bergman ME, Davis B, Phillips MA . Medically useful plant terpenoids: biosynthesis, occurrence, and mechanism of action. Molecules, 2019,24(21):3961. |
[12] | Eisenreich W, Bacher A, Arigoni D, Rohdich F . Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci, 2004,61(12):1401-1426. |
[13] | Miziorko HM . Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys, 2011,505(2):131-143. |
[14] | Banerjee A, Sharkey TD . Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep, 2014,31(8):1043-1055. |
[15] | Gaisser S, Heide L . Inhibition and regulation of shikonin biosynthesis in suspension cultures of Lithospermum. Phytochemistry, 1996,41(4):1065-1072. |
[16] | Singh RS, Gara RK, Bhardwaj PK, Kaachra A, Malik S, Kumar R, Sharma M, Ahuja PS, Kumar S . Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia [Arnebia euchroma(Royle) Johnston]. BMC Mol Biol, 2010,11:88-98. |
[17] | Szkopinska A . Ubiquinone. Biosynthesis of quinone ring and its isoprenoid side chain. Intracellular localization. Acta Biochim Pol, 2000,47(2):469-480. |
[18] | Padilla S, Jonassen T, Jiménez-Hidalgo MA, Fernández- Ayala DJM, López-Lluch G, Marbois B, Navas P, Clarke CF, Santos-Ocaña C . Demethoxy-Q, an intermediate of coenzyme Q biosynthesis, fails to support respiration in Saccharomyces cerevisiae and lacks antioxidant activity. J Biol Chem, 2004,279(25):25995-26004. |
[19] | Sommer S, Köhle A, Yazaki K, Shimomura K, Bechthold A, Heide L . Genetic engineering of shikonin biosynthesis hairy root cultures of Lithospermum erythrorhizon transformed with the bacterial ubiC gene. Plant Mol Biol, 1999,39(4):683-693. |
[20] | Köhle A, Sommer S, Yazaki K, Ferrer A, Boronat A, Li SM, Heide L . High level expression of chorismate pyruvate- lyase (UbiC) and HMG-CoA reductase in hairy root cultures of Lithospermum erythrorhizon. Plant Cell Physiol, 2002,43(8):894-902. |
[21] | Takanashi K, Nakagawa Y, Aburaya S, Kaminade K, Aoki W, Saida-Munakata Y, Sugiyama A, Ueda M, Yazaki K . Comparative proteomic analysis of Lithospermum erythrorhizon reveals regulation of a variety of metabolic enzymes leading to comprehensive understanding of the shikonin biosynthetic pathway. Plant Cell Physiol, 2019,60(1):19-28. |
[22] | Heide L, Nishioka N, Fukui H, Tabata M . Enzymatic regulation of shikonin biosynthesis in Lithospermum erythrorhizon cell cultures. Phytochemistry, 1989,28(7):1873-1877. |
[23] | Wang S, Wang RS, Liu T, Lv CG, Liang JW, Kang CZ, Zhou LY, Guo J, Cui GH, Zhang Y, Werck-Reichhart D, Guo LP, Huang LQ . CYP76B74 catalyzes the 3''-hydroxylation of geranylhydroquinone in shikonin biosynthesis. Plant Physiol, 2019,179(2):402-414. |
[24] | Ohara K, Muroya A, Fukushima N, Yazaki K . Functional characterization of LePGT1, a membrane-bound prenyltransferase involved in the geranylation of p-hydroxybenzoic acid. Biochem J, 2009,421(2):231-241. |
[25] | Song W, Zhuang YB, Liu T . Potential role of two cytochrome P450s obtained from Lithospermum erythrorhizon in catalyzing the oxidation of geranylhydroquinone during shikonin biosynthesis. Phytochemistry, 2020,175:112375. |
[26] | Oshikiri H, Watanabe B, Yamamoto H, Yazaki K, Takanashi K . Two BAHD acyltransferases catalyze the last step in the shikonin/alkannin biosynthetic pathway. Plant Physiol, 2020,184(2):753-761. |
[27] | Lange BM, Severin K, Bechthold A, Heide L . Regulatory role of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase for shikonin biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Planta, 1998,204(2):234-241. |
[28] | Katsuyama Y, Matsuzawa M, Funa N, Horinouchi S . Production of curcuminoids by Escherichia coli carrying an artificial biosynthesis pathway. Microbiology, 2008,154(Pt 9):2620-2628. |
[29] | Sykłowska-Baranek K, Pietrosiuk A, Naliwajski MR, Kawiak A, Jeziorek M, Wyderska S, Lojkowska E, Chinou I . Effect of l-phenylalanine on PAL activity and production of naphthoquinone pigments in suspension cultures ofArnebia euchroma(Royle) Johnst. In Vitro Cell Dev Biol Plant, 2012,48(5):555-564. |
[30] | Yamamura Y, Ogihara Y, Mizukami H . Cinnamic acid 4-hydroxylase from Lithospermum erythrorhizon: cDNA cloning and gene expression. Plant Cell Rep, 2001,20(7):655-662. |
[31] | Yazaki K, Kunihisa M, Fujisaki T, Sato F . Geranyl diphosphate: 4-hydroxybenzoate geranyltransferase from Lithospermum erythrorhizon. Cloning and characterization of a ket enzyme in shikonin biosynthesis. J Biol Chem, 2002,277(8):6240-6246. |
[32] | Yazaki K, Matsuoka H, Shimomura K, Bechthold A, Sato F . A novel dark-inducible protein, LeDI-2, and its involvement in root-specific secondary metabolism in Lithospermum erythrorhizon. Plant Physiol, 2001,125(4):1831-1841. |
[33] | Pré M, Atallah M, Champion A, De Vos M, Pieterse CMJ, Memelink J . The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol, 2008,147(3):1347-1357. |
[34] | Zhu ZQ, An FY, Feng Y, Li PP, Li X, Mu A, Jiang ZQ, Kim JM, To TK, Li W, Zhang XY, Yu Q, Dong Z, Chen WQ, Seki M, Zhou JM, Guo HW . Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci USA, 2011,108(30):12539-12544. |
[35] | Zhang W, Zou A, Miao J, Yin Y, Tian R, Pang Y, Yang R, Qi J, Yang Y . LeERF-1, a novel AP2/ERF family gene within the B3 subcluster, is down-regulated by light signals in Lithospermum erythrorhizon. Plant Biol, 2011,13(2):343-348. |
[36] | Fang RJ, Zou AL, Zhao H, Wu FY, Zhu Y, Zhao H, Liao YH, Tang RJ, Pang YJ, Yang RW, Wang XM, Qi JL, Lu GH, Yang YH . Transgenic studies reveal the positive role of LeEIL-1 in regulating shikonin biosynthesis in Lithospermum erythrorhizon hairy roots. BMC Plant Biol, 2016,16(1):121-132. |
[37] | Sauter M, Lorbiecke R, Ouyang B, Pochapsky TC, Rzewuski G . The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-adenosylmethionine. Plant J, 2005,44(5):718-729. |
[38] | Qi JL, Zhang WJ, Liu SH, Wang H, Sun DY, Xu GH, Shi MW, Liu Z, Zhang MS, Zhang HM, Yang YH . Expression analysis of light-regulated genes isolated from a full-length-enriched cDNA library of Onosma paniculatum cell cultures. J Plant Physiol, 2008,165(14):1474-1482. |
[39] | Yazaki K, Bechthold A, Tabata M . Nucleotide sequence of a cDNA from Lithospermum erythrorhizon homologous to PR-1 of parsley. Plant Physiol, 1995,108(3):1331-1332. |
[40] | Yamamura Y, Sahin FP, Nagatsu A, Mizukami H . Molecular cloning and characterization of a cDNA encoding a novel apoplastic protein preferentially expressed in a shikonin- producing callus strain of Lithospermum erythrorhizon. Plant Cell Physiol, 2003,44(4):437-446. |
[41] | Zhao H, Baloch SK, Kong LR, Zhang WJ, Zou AL, Wang XM, Qi JL, Yang YH . Molecular cloning, characterization, and expression analysis of LeMYB1 from Lithospermum erythrorhizon. Biol Plantarum, 2014,58(3):436-444. |
[42] | Zhao H, Chang QS, Zhang DX, Fang RJ, Zhao H, Wu FY, Wang XM, Lu GH, Qi JL, Yang YH . Overexpression of LeMYB1 enhances shikonin formation by up-regulating key shikonin biosynthesis-related genes in Lithospermum erythrorhizon. Biol Plantarum, 2015,59(3):429-435. |
[43] | Andújar I, Recio MC, Giner RM, Ríos JL . Traditional Chinese Medicine Remedy to Jury: The Pharmacological basis for the use of shikonin as an anticancer therapy. Curr Med Chem, 2013,20(23):2892-2898. |
[44] | Lin HY, Li ZK, Bai LF, Baloch SK, Wang F, Qiu HY, Wang X, Qi JL, Yang RW, Wang XM, Yang YH . Synthesis of aryl dihydrothiazol acyl shikonin ester derivatives as anticancer agents through microtubule stabilization. Biochem Pharmacol, 2015,96(2):93-106. |
[45] | Lu L, Qin AP, Huang HB, Zhou P, Zhang CY, Liu NN, Li SJ, Wen GM, Zhang CG, Dong WH, Wang XJ, Dou QP, Liu JB . Shikonin extracted from medicinal Chinese herbs exerts anti-inflammatory effect via proteasome inhibition. Eur J Pharmacol, 2011,658(2-3):242-247. |
[46] | Yang F, Chen Y, Duan WH, Zhang C, Zhu H, Ding J . SH-7, a new synthesized shikonin derivative, exerting its potent antitumor activities as a topoisomerase inhibitor. Int J Cancer, 2006,119(5):1184-1193. |
[47] | Ahn BZ, Baik KU, Kweon GR, Lim K, Hwang BD . Acylshikonin analogues: Synthesis and inhibition of DNA topoisomerase-I. J Med Chem, 1995,38(6):1044-1047. |
[48] | Qiu HY, Zhu X, Luo YL, Lin HY, Tang CY, Qi JL, Pang YJ, Yang RW, Lu GH, Wang XM, Yang YH . Identification of new shikonin derivatives as antitumor agents targeting STAT3 SH2 domain. Sci Rep, 2017,7(1):2863-2875. |
[49] | Acharya BR, Bhattacharyya S, Choudhury D, Chakrabarti G . The microtubule depolymerizing agent naphthazarin induces both apoptosis and autophagy in A549 lung cancer cells. Apoptosis, 2011,16(9):924-939. |
[50] | Wang XM, Lin HY, Kong WY, Guo J, Shi J, Huang SC, Qi JL, Yang RW, Gu HW, Yang YH . Synthesis and biological evaluation of heterocyclic carboxylic acyl shikonin derivatives. Chem Biol Drug Des, 2014,83(3):334-343. |
[51] | Guo J, Chen XF, Liu J, Lin HY, Han HW, Liu HC, Huang SC, Shahla BK, Kulek A, Qi JL, Wang XM, Ling LJ, Yang YH . Novel shikonin derivatives targeting tubulin as anticancer agents. Chem Biol Drug Des, 2014,84(5):603-615. |
[52] | Baloch SK, Ling LJ, Qiu HY, Ma L, Lin HY, Huang SC, Qi JL, Wang XM, Lu GH, Yang YH . Synthesis and biological evaluation of novel shikonin ester derivatives as potential anti-cancer agents. RSC Adv, 2014,4(67):35588-35596. |
[53] | Lin HY, Han HW, Bai LF, Qiu HY, Yin DZ, Qi JL, Wang XM, Gu HW, Yang YH . Design, synthesis and biological evaluation of shikonin thio-glycoside derivatives: new anti-tubulin agents. RSC Adv, 2014,4(91):49796-49805. |
[54] | Sun WX, Han HW, Yang MK, Wen ZL, Wang YS, Fu JY, Lu YT, Wang MY, Bao JX, Lu GH, Qi JL, Wang XM, Lin HY, Yang YH . Design, synthesis and biological evaluation of benzoylacrylic acid shikonin ester derivatives as irreversible dual inhibitors of tubulin and EGFR. Bioorg Med Chem, 2019,27(23):115153-115169. |
[55] | Huang ZS, Wu HQ, Duan ZF, Xie BF, Liu ZC, Feng GK, Gu LQ, Chan ASC, Li YM . Synthesis and cytotoxicity study of alkannin derivatives. Eur J Med Chem, 2004,39(9):755-764. |
[56] | Deng R, Tang J, Xie BF, Feng GK, Huang YH, Liu ZC, Zhu XF . SYUNZ-16, a newly synthesized alkannin derivative, induces tumor cells apoptosis and suppresses tumor growth through inhibition of PKB/AKT kinase activity and blockade of AKT/FOXO signal pathway. Int J Cancer, 2010,127(1):220-229. |
[57] | Zhang X, Cui JH, Zhou W, Li SS . Design, Synthesis and anticancer activity of shikonin and alkannin derivatives with different substituents on the naphthazarin scaffold. Chem Res Chinese U, 2015,31(3):394-400. |
[58] | Wang RB, Zhou W, Meng QQ, Zhang X, Ding J, Xu Y, Song HL, Yang K, Cui JH, Li SS . Design, synthesis, and biological evaluation of shikonin and alkannin derivatives as potential anticancer agents via a prodrug approach. Chem Med Chem, 2014,9(12):2798-2808. |
[59] | Huang G, Meng QQ, Zhou W, Zhang QJ, Dong JY, Li SS . Design and synthesis of biotinylated dimethylation of alkannin oxime derivatives. Chinese Chem Lett, 2017,28(2):453-457. |
[60] | Chang MX, Wang HG, Niu JJ, Song Y, Zou ZH . Alkannin-induced oxidative DNA damage synergizes with PARP inhibition to cause cancer-specific cytotoxicity. Front Pharmacol, 2020,11:610205-610218. |
[61] | Yang Y, Wang J, Yang Q, Wu SS, Yang ZG, Zhu HH, Zheng M, Liu WX, Wu W, He JL, Chen Z . Shikonin inhibits the lipopolysaccharide-induced release of HMGB1 in RAW264.7 cells via IFN and NF-κB signaling pathways. Int Immunopharmacol, 2014,19(1):81-87. |
[62] | Komi Y, Suzuki Y, Shimamura M, Kajimoto S, Nakajo S, Masuda M, Shibuya M, Itabe H, Shimokado K, Oettgen P, Nakaya K, Kojima S . Mechanism of inhibition of tumor angiogenesis by beta-hydroxyisovalerylshikonin. Cancer Sci, 2009,100(2):269-277. |
[63] | Woo HJ, Jun DY, Lee JY, Park HS, Woo MH, Park SJ, Kim SC, Yang CH, Kim YH . Anti-inflammatory action of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) suppresses both the MyD88-dependent and TRIF-dependent pathways of TLR4 signaling in LPS-stimulated RAW264.7 cells. J Ethnopharmacol, 2017,205:103-115. |
[64] | Fan XH, Cheng L, Yan AH . Ameliorative effect of acetylshikonin on ovalbumin (OVA)-induced allergic rhinitis in mice through the inhibition of Th2 cytokine production and mast cell histamine release. APMIS, 2019,127(10):688-695. |
[65] | Zeng JC, Zhu BH, Su ML . Autophagy is involved in acetylshikonin ameliorating non-alcoholic steatohepatitis through AMPK/mTOR pathway. Biochem Biophys Res Commun, 2018,503(3):1645-1650. |
[66] | Cui LB, Yan Y, Zhang M, Wu JF, Tang XX, Yang J, Li LL, Yao K, Zou WG, Jiang CH . Acetylshikonin suppresses atherogenesis by attenuating vascular inflammation in apolipoprotein E-deficient mice. Int J Clin Exp Med, 2018,11(3):1882-1890. |
[67] | Zhang ZL, Fan HY, Yang MY, Zhang ZK, Liu K . Therapeutic effect of a hydroxynaphthoquinone fraction on dextran sulfate sodium-induced ulcerative colitis. World J Gastroentero, 2014,20(41):15310-15318. |
[68] | Andújar I, Ríos JL, Giner RM, Cerdá JM, Recio MDC . Beneficial effect of shikonin on experimental colitis induced by dextran sulfate sodium in Balb/C mice. Evid Based Complement Alternat Med, 2012,38:271606. |
[69] | Haghbeen K, Pourmolaei S, Mareftjo MJ, Mousavi A, Noghabi KA, Shirazi FH, Meshkat A . Detailed investigations on the solid cell culture and antimicrobial activities of the Iranian Arnebia euchroma. J Biomed Biotechnol, 2011,165852. |
[70] | Li HM, Tang YL, Zhang ZH, Liu CJ, Li HZ, Li RT, Xia XS . Compounds from Arnebia euchroma and their related anti-HCV and antibacterial activities. Planta Med, 2012,78(1):39-45. |
[71] | Shen CC, Syu WJ, Li SY, Lin CH, Lee GH, Sun CM . Antimicrobial activities of naphthazarins from Arnebia euchroma. J Nat Prod, 2002,65(12):1857-1862. |
[72] | Kuo HM, Hsia TC, Chuang YC, Lu HF, Lin SY, Chung JG . Shikonin inhibits the growth and N-acetylation of 2-aminofluorene in Helicobacter pylori from ulcer patients. Anticancer Res, 2004,24(3a):1587-1592. |
[73] | Chen X, Yang L, Zhang N, Turpin JA, Buckheit RW, Osterling C, Oppenheim JJ, Howard OMZ . Shikonin, a component of Chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. Antimicrob Agents Chemother, 2003,47(9):2810-2816. |
[74] | Zhang Y, Han H, Sun L, Qiu H, Lin H, Yu L, Zhu W, Qi J, Yang R, Pang Y, Wang X, Lu G, Yang Y . Antiviral activity of shikonin ester derivative PMM-034 against enterovirus 71 in vitro. Braz J Med Biol Res, 2017,50(10):e6586. |
[75] | Zhang YH, Han HW, Qiu HY, Lin HY, Yu LG, Zhu WZ, Qi JL, Yang RW, Pang YJ, Wang XM, Lu GH, Yang YH . Antiviral activity of a synthesized shikonin ester against influenza A (H1N1) virus and insights into its mechanism. Biomed Pharmacother, 2017,93:636-645. |
[76] | Lee H, Bae S, Kim K, Kim W, Chung SI, Yang Y, Yoon Y . Shikonin inhibits adipogenesis by modulation of the WNT/beta-catenin pathway. Life Sci, 2011,88(7-8):294-301. |
[77] | Lee H, Kang R, Yoon Y . Shikonin inhibits fat accumulation in 3T3-L1 adipocytes. Phytother Res, 2010,24(3):344-351. |
[78] | Wang ZH, Liu T, Gan L, Wang T, Yuan XA, Zhang B, Chen HY, Zheng QS . Shikonin protects mouse brain against cerebral ischemia/reperfusion injury through its antioxidant activity. Eur J Pharmacol, 2010,643(2-3):211-217. |
[79] | Wang LN, Li ZZ, Zhang XJ, Wang S, Zhu CH, Miao JY, Chen LY, Cui LL, Qiao HM . Protective effect of shikonin in experimental ischemic stroke: attenuated TLR4, p-p38MAPK, NF-κB, TNF-α and MMP-9 expression, up-regulated Claudin-5 expression, ameliorated BBB permeability. Neurochem Res, 2014,39(1):97-106. |
[80] | Shan ZL, Zhong L, Xiao CL, Gan LG, Xu T, Song H, Yang R, Li L, Liu BZ . Shikonin suppresses proliferation and induces apoptosis in human leukemia NB4 cells through modulation of MAPKs and c-Myc. Mol Med Rep, 2017,16(3):3055-3060. |
[81] | Lan WJ, Wan SB, Gu WQ, Wang HY, Zhou SW . Mechanisms behind the inhibition of lung adenocarcinoma cell by shikonin. Cell Biochem Biophys, 2014,70(2):1459-1467. |
[82] | Kim EK, Choi EJ . Compromised MAPK signaling in human diseases: an update. Arch Toxicol, 2015,89(6):867-882. |
[83] | Fu DJ, Shang XF, Ni Z, Shi GG . Shikonin inhibits inflammation and chondrocyte apoptosis by regulation of the PI3K/Akt signaling pathway in a rat model of osteoarthritis. Exp Ther Med, 2016,12(4):2735-2740. |
[84] | Fan C, Zhang XF, Upton Z . Anti-inflammatory effects of shikonin in human periodontal ligament cells. Pharm Biol, 2018,56(1):415-421. |
[85] | Yan Y, Tan F, Miao H, Wang H, Cao YY . Effect of shikonin against Candida albicans biofilms. Front Microbiol, 2019,10:1085-1095. |
[86] | Shishodia SK, Shankar J . Proteomic analysis revealed ROS-mediated growth inhibition of Aspergillus terreus by shikonin. J Proteomics, 2020,224:103849-103860. |
[87] | Liao ZB, Zhu ZY, Li L, Wang L, Wan H, Jian YY, Cao YY . Metabonomics on Candida albicans indicate the excessive H3K56ac is involved in the antifungal activity of shikonin. Emerg Microbes Infec, 2019,8(1):1243-1253. |
[88] | Liao ZB, Yan Y, Dong HH, Zhu ZY, Jiang YY, Cao YY . Endogenous nitric oxide accumulation is involved in the antifungal activity of shikonin against Candida albicans. Emerg Microbes Infec, 2016,5(8):e88. |
[1] | 徐思远, 寿佳, 吴强. HS5-1增强子eRNA PEARL对原钙粘蛋白α基因簇的表达调控[J]. 遗传, 2022, 44(8): 695-764. |
[2] | 蒋卓远, 查艳, 石小峰, 张永彪. 神经嵴细胞和神经嵴病及其致病机制的研究进展[J]. 遗传, 2022, 44(2): 117-133. |
[3] | 毛轲, 孟子秋, 张永彪. 神经嵴发育调控及颅面部遗传基础研究进展[J]. 遗传, 2022, 44(12): 1089-1102. |
[4] | 韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[5] | 谷晓勇, 刘扬, 刘利静. 植物激素水杨酸生物合成和信号转导研究进展[J]. 遗传, 2020, 42(9): 858-869. |
[6] | 邢万金. 乳糖操纵子模型的建立与教学中若干问题的解析[J]. 遗传, 2019, 41(6): 548-563. |
[7] | 汪德州,莫晓婷,张霞,徐妙云,赵军,王磊. 玉米逆境响应相关转录因子ZmC2H2-1基因克隆及功能验证[J]. 遗传, 2018, 40(9): 767-778. |
[8] | 赵若阳, 赵一萍, 李蓓, 格日乐其木格, 张心壮, 陶克涛, 图格琴, 旭仁其木格, 青柏, 李超, 白东义, 芒来. 马毛色遗传机理研究进展[J]. 遗传, 2018, 40(5): 357-368. |
[9] | 余莉莉,董琬如,陈明会,孔祥阳. 性腺母细胞瘤的分子遗传机制研究进展[J]. 遗传, 2015, 37(11): 1105-1115. |
[10] | 周坤, 张今今. 植物中的NO及其对花发育的调节[J]. 遗传, 2014, 36(7): 661-668. |
[11] | 汤晓丽 邓立彬 林加日 张伟龙 刘双梅 魏懿 梅普明 汪雁 梁尚栋. 固醇调节元件结合蛋白1及其靶基因网络[J]. 遗传, 2013, 35(5): 607-615. |
[12] | 侯晓明,陈星,王玉林. Pax2在肾脏发育和肾疾病中的调控作用[J]. 遗传, 2011, 33(9): 931-938. |
[13] | 李文利,湛桂花,郑华. 放线菌萜类化合物生物合成研究进展[J]. 遗传, 2011, 33(10): 1087-1092. |
[14] | 沈亚欧,林海建,张志明,高世斌,潘光堂. 植物逆境miRNA研究进展[J]. 遗传, 2009, 31(3): 227-235. |
[15] | 严松,严长杰,顾铭洪. 植物叶发育的分子机理[J]. 遗传, 2008, 30(9): 1127-1135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: