遗传 ›› 2013, Vol. 35 ›› Issue (7): 875-884.doi: 10.3724/SP.J.1005.2013.00875
郑仲仲1, 沈金秋1, 潘伟槐2, 潘建伟1
收稿日期:
2012-12-19
修回日期:
2013-03-15
出版日期:
2013-07-20
发布日期:
2013-07-25
通讯作者:
潘建伟
E-mail:jwpan@zjnu.cn
基金资助:
国家自然科学基金项目(编号:31171520, 30970255和31000741)和浙江省自然科学基金项目(编号:R3100175和Y3100207)资助
ZHENG Zhong-Zhong1, SHEN Jin-Qiu1, PAN Wei-Huai2, PAN Jian-Wei1
Received:
2012-12-19
Revised:
2013-03-15
Online:
2013-07-20
Published:
2013-07-25
摘要: 钙信号是植物生长发育和逆境响应的重要调控因子, 是植物生理与逆境生物学研究领域中的热点之一。当植物细胞受到外界逆境刺激时, 其胞内会产生具有时空特异性的Ca2+信号变化, 这种变化首先被胞内钙感受器所感知并解码, 再由钙感受器互作蛋白将信号传递到下游, 从而激活下游早期响应基因的表达或相关离子通道的活性, 最终产生特异性逆境响应。植物细胞通过感知胞内钙信号的变化如何识别来自外界不同性质或不同强度的刺激, 是近几年植物生物学家所关注的科学问题。文章主要总结了近几年在植物钙感受器研究领域中的最新进展, 包括钙依赖蛋白激酶(CDPKs)、钙调素(CaMs)、类钙调素蛋白(CMLs)、类钙调磷酸酶B蛋白(CBLs)及其互作蛋白激酶(CIPKs)等的结构、功能及其介导的逆境信号途径, 并提供新的见解和展望。
郑仲仲 沈金秋 潘伟槐 潘建伟. 植物钙感受器及其介导的逆境信号途径[J]. 遗传, 2013, 35(7): 875-884.
ZHENG Zhong-Zhong SHEN Jin-Qiu PAN Wei-Huai PAN Jian-Wei. Calcium sensors and their stress signaling pathways in plants[J]. HEREDITAS, 2013, 35(7): 875-884.
[1] Dodd AN, Kudla J, Sanders D. The language of calcium signaling. Annu Rev Plant Biol, 2010, 61(1): 593-620.[2] Kudla J, Batistic O, Hashimoto K. Calcium signals: the lead currency of plant information processing. Plant Cell, 2010, 22(3): 541-563.[3] Batisti? O, Kudla J. Analysis of calcium signaling pathways in plants. Biochim Biophys Acta, 2012, 1820(8): 1283-1293.[4] Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature, 2001, 411(6841): 1053-1057.[5] Wheeler GL, Brownlee C. Ca2+ signalling in plants and green algae-changing channels. Trends Plant Sci, 2008, 13(9): 506-514.[6] Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE, Gilliham M, Liu LH, Obermeyer G, Feijó JA. Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science, 2011, 332(6028): 434-437.[7] 尚忠林, 毛国红, 孙大业. 植物细胞内钙信号的特异性. 植物生理学通讯, 2003, 39(2): 93-100.[8] Harper JF, Harmon A. Plants, symbiosis and parasites: a calcium signalling connection. Nat Rev Mol Cell Biol, 2005, 6(7): 555-566.[9] Sanders D, Pelloux J, Brownlee C, Harper JF. Calcium at the crossroads of signaling. Plant Cell, 2002, 14(Suppl. 1): S401-S417.[10] Hashimoto K, Kudla J. Calcium decoding mechanisms in plants. Biochimie, 2011, 93(12): 2054-2059.[11] Harmon AC, Gribskov M, Harper JF. CDPKs-a kinase for every Ca2+ signal? Trends Plant Sci, 2000, 5(4): 154-159.[12] Harper JF, Breton G, Harmon A. Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol, 2004, 55: 263-288.[13] Chandran V, Stollar EJ, Lindorff-Larsen K, Harper JF, Chazin WJ, Dobson CM, Luisi BF, Christodoulou J. Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): a novel mode of calmodulin- target recognition. J Mol Biol, 2006, 357(2): 400-410.[14] Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B, Bayer R, Teige M. The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J, 2010, 63(3): 484-498.[15] Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell, 2007, 19(3): 1065-1080.[16] Asano T, Hakata M, Nakamura H, Aoki N, Komatsu S, Ichikawa H, Hirochika H, Ohsugi R. Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Mol Biol, 2011, 75(1-2): 179-191.[17] Coca M, San Segundo B. AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. Plant J, 2010, 63(3): 526-540.[18] Mori IC, Murata Y, Yang YZ, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion and Ca2+-permeable channels and stomatal closure. PLoS Biol, 2006, 4(10): e327.[19] Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid K, Grill E. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA, 2010, 107(17): 8023-8028.[20] Geiger D, Maierhofer T, Al-Rasheid KAS, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal, 2011, 4(173): ra32.[21] Munemasa S, Hossain MA, Nakamura Y, Mori IC, Murata Y. The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. Plant Physiol, 2011, 155(1): 553-561.[22] Choi H, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol, 2005, 139(4): 1750-1761.[23] Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 2007, 19(10): 3019-3036.[24] Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high- salinity conditions. Proc Natl Acad Sci USA, 2000, 97(21): 11632-11637.[25] Ishida S, Yuasa T, Nakata M, Takahashi Y. A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor REPRESSION OF SHOOT GROWTH in response to gibberellins. Plant Cell, 2008, 20(12): 3273-3288.[26] Asano T, Hayashi N, Kikuchi S, Ohsugi R. CDPK-mediated abiotic stress signaling. Plant Signal Behav, 2012, 7(7): 817-821.[27] McCormack E, Tsai YC, Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci, 2005, 10(8): 383-389.[28] Boonburapong B, Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol, 2007, 7(1): 4.[29] Yamakawa H, Mitsuhara I, Ito N, Seo S, Kamada H, Ohashi Y. Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant. Eur J Biochem, 2001, 268(14): 3916-3929.[30] Reddy ASN, Day IS, Narasimhulu SB, Safadi F, Reddy VS, Golovkin M, Harnly MJ. Isolation and characterization of a novel calmodulin-binding protein from potato. J Biol Chem, 2002, 277(6): 4206-4214.[31] Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell, 2002, 14(Suppl): S389-S400.[32] Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+-and pH-dependent manner. Proc Natl Acad Sce USA, 2005, 102(44): 16107-16112.[33] Yang T, Poovaiah B. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein. Biochem Biophys Res Commun, 2000, 275(2): 601-607.[34] Singh S, Parniske M. Activation of calcium-and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. Curr Opin Plant Biol, 2012, 15(4): 444-453.[35] Zhang L, Lu YT. Calmodulin-binding protein kinases in plants. Trends Plant Sci, 2003, 8(3): 123-127.[36] Yang TB, Ali GS, Yang LH, Du LQ, Reddy ASN, Poovaiah BW. Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants. Plant Signal Behav, 2010, 5(8): 991-994.[37] Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J, 2008, 55(5): 760-773.[38] Liu HT, Li GL, Chang H, Sun DY, Zhou RG, Li B. Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ, 2007, 30(2): 156-164.[39] Popescu SC, Popescu GV, Bachan S, Zhang ZM, Seay M, Gerstein M, Snyder M, Dinesh-Kumar SP. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci USA, 2007, 104(11): 4730-4735.[40] Du LQ, Ali GS, Simons KA, Hou JG, Yang TB, Reddy ASN, Poovaiah BW. Ca2+/calmodulin regulates salicylic- acid-mediated plant immunity. Nature, 2009, 457(7233): 1154-1158.[41] Galon Y, Nave R, Boyce JM, Nachmias D, Knight MR, Fromm H. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett, 2008, 582(6): 943-948.[42] Reddy ASN, Ali GS, Celesnik H, Day IS. Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell, 2011, 23(6): 2010-2032.[43] Kushwaha R, Singh A, Chattopadhyay S. Calmodulin7 plays an important role as transcriptional regulator in Arabidopsis seedling development. Plant Cell, 2008, 20(7): 1747-1759.[44] Guo HW, Mockler T, Duong H, Lin CT. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science, 2001, 291(5503): 487-490.[45] Kim J, Kim HY. Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling. FEBS Lett, 2006, 580(22): 5251-5256.[46] Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K. Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell, 2011, 41(6): 649-660.[47] Lee K, Song EH, Kim HS, Yoo JH, Han HJ, Jung MS, Lee SM, Kim KE, Kim MC, Cho MJ. Regulation of MAPK phosphatase 1 (AtMKP1) by calmodulin in Arabidopsis. J Biol Chem, 2008, 283(35): 23581-23588.[48] Weinl S, Kudla J. The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol, 2009, 184(3): 517-528.[49] Piao HL, Xuan YH, Park SH, Je BI, Park SJ, Kim CM, Huang J, Wang GK, Kim MJ, Kang SM, Lee IJ, Kwon TR, Kim YH, Yeo US, Yi G, Son D, Han CD. OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Mol Cell, 2010, 30(1): 19-27.[50] Yu YH, Xia XL, Yin WL, Zhang HC. Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regul, 2007, 52(2): 101-110.[51] Chen XF, Gu ZM, Xin DD, Hao L, Liu CJ, Huang J, Ma BJ, Zhang HS. Identification and characterization of putative CIPK genes in maize. J Genet Genomics, 2011, 38(2): 77-87.[52] Hamada S, Seiki Y, Watanabe K, Ozeki T, Matsui H, Ito H. Expression and interaction of the CBLs and CIPKs from immature seeds of kidney bean (Phaseolus vulgaris L.). Phytochemistry, 2009, 70(4): 501-507.[53] Akaboshi M, Hashimoto H, Ishida H, Saijo S, Koizumi N, Sato M, Shimizu T. The crystal structure of plant-specific calcium-binding protein AtCBL2 in complex with the regulatory domain of AtCIPK14. J Mol Biol, 2008, 377(1): 246-257.[54] Batisti? O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta, 2009, 1793(6): 985-992.[55] Albrecht V, Ritz O, Linder S, Harter K, Kudla J. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J, 2001, 20(5): 1051-1063.[56] Lee SC, Lan WZ, Kim BG, Li LG, Cheong YH, Pandey GK, Lu GH, Buchanan BB, Luan S. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci USA, 2007, 104(40): 15959-15964.[57] Ohta M, Guo Y, Halfter U, Zhu JK. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci USA, 2003, 100(20): 11771-11776.[58] Sánchez-Barrena MJ, Fujii H, Angulo I, Martínez-Ripoll M, Zhu JK, Albert A. The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Mol Cell, 2007, 26(3): 427-435.[59] Batistic O, Waadt R, Steinhorst L, Held K, Kudla J. CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. Plant J, 2010, 61(2): 211-222.[60] Oh SI, Park J, Yoon S, Kim Y, Park S, Ryu M, Nam MJ, Ok SH, Kim JK, Shin JS, Kim KN. The Arabidopsis calcium sensor calcineurin B-like 3 inhibits the 5'-methylthioadenosine nucleosidase in a calcium-dependent manner. Plant Physiol, 2008, 148(4): 1883-1896.[61] Preuss ML, Schmitz AJ, Thole JM, Bonner HK, Otegui MS, Nielsen E. A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol, 2006, 172(7): 991-998.[62] Popescu SC, Popescu GV, Bachan S, Zhang ZM, Gerstein M, Snyder M, Dinesh-Kumar SP. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 2009, 23(1): 80-92.[63] 张俊文, 魏建华, 王宏芝, 王彦珍, 马荣才, 李瑞芬. CBL-CIPK 信号系统在植物应答逆境胁迫中的作用与机制. 自然科学进展, 2009, 18(8): 847-856.[64] Lee KW, Chen PW, Lu CA, Chen SA, Ho THD, Yu SM. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal, 2009, 2(91): ra61.[65] Meyer AK, Longin CF, Klose C, Hermann A. New regulator for energy signaling pathway in plants highlights conservation among species. Sci Signal, 2010, 3(119): jc5.[66] Xiang Y, Huang YM, Xiong LZ. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol, 2007, 144(3): 1416-1428.[67] 陈析丰, 顾志敏, 刘峰, 马伯军, 张红生. 生物与非生物胁迫下水稻 CIPK 基因的鉴定分析. 中国水稻科学, 2010, 24(6): 567-574.[68] Wang MY, Gu D, Liu TS, Wang ZQ, Guo XY, Hou W, Bai YF, Chen XP, Wang GY. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol, 2007, 65(6): 733-746.[69] Zhao JF, Sun ZF, Zheng J, Guo XY, Dong ZG, Huai JL, Gou MY, He JG, Jin YS, Wang JH, Wang GY. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol Biol, 2009, 69(6): 661-674.[70] Li RF, Zhang JW, Wu GY, Wang HZ, Chen YJ, Wei JH. HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ, 2012, 35(9): 1582-1600.[71] Yuasa T, Ishibashi Y, Iwaya-Inoue M. A flower specific calcineurin B-like molecule (CBL)-interacting protein kinase (CIPK) homolog in tomato cultivar Micro-Tom (Solanum lycopersicum L.). Am J Plant Sci, 2012, 3(6): 753-763.[72] Li DD, Song SY, Xia XL, Yin WL. Two CBL genes from Populus euphratica confer multiple stress tolerance in transgenic triploid white poplar. Plant Cell Tiss Org, 2012, 109(3): 1-13. |
[1] | 胡伟娟, 凌宏清, 傅向东. 植物表型组学研究平台建设及技术应用[J]. 遗传, 2019, 41(11): 1060-1066. |
[2] | 徐纪明,胡晗,毛文轩,毛传澡. 利用重测序技术获取转基因植物T-DNA插入位点[J]. 遗传, 2018, 40(8): 676-682. |
[3] | 陈建民. 植物遗传学中的世代及符号应用的建议[J]. 遗传, 2018, 40(6): 508-514. |
[4] | 骆甲,王型力,孙志超,吴迪,张玮,王正加. 植物环状RNA研究进展[J]. 遗传, 2018, 40(6): 467-477. |
[5] | 张太奎, 苑兆和. 植物古基因组学研究进展[J]. 遗传, 2018, 40(1): 44-56. |
[6] | 高飞雁, 李玲, 王教瑜, 王艳丽, 孙国昌. PEX基因在过氧化物酶体形成及真菌致病性中的作用[J]. 遗传, 2017, 39(10): 908-917. |
[7] | 王钦美, 崔建国, 于长志, 张智, 吴月亮, 张丽杰, 林梅. 案例教学在林学专业遗传学教学中的应用[J]. 遗传, 2017, 39(10): 939-946. |
[8] | 王云生. 基于高通量测序的植物群体基因组学研究进展[J]. 遗传, 2016, 38(8): 688-699. |
[9] | 刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊. 高通量转录组测序技术在植物雄性不育研究中的应用[J]. 遗传, 2016, 38(8): 677-687. |
[10] | 曾笑威, 刘翠翠, 韩凝, 边红武, 朱睦元. 植物自噬的调控因子和受体蛋白研究进展[J]. 遗传, 2016, 38(7): 644-650. |
[11] | 许佳, 侯宁, 韩凝, 边红武, 朱睦元. 小分子RNA在植物激素信号通路中的调控功能[J]. 遗传, 2016, 38(5): 418-426. |
[12] | 马兴亮,刘耀光. 植物CRISPR/Cas9基因组编辑系统与突变分析[J]. 遗传, 2016, 38(2): 118-125. |
[13] | 龚淑敏, 丁艳菲, 朱诚. miRNA在植物种子发育过程中的作用[J]. 遗传, 2015, 37(6): 554-560. |
[14] | 林晓飞,征荣,莫日根. 本科植物细胞与基因工程研究型实验课程的构建与实践[J]. 遗传, 2015, 37(4): 402-406. |
[15] | 施子晗, 李泽琴, 张根发. 植物组蛋白赖氨酸化修饰参与基因表达调控的机理[J]. 遗传, 2014, 36(3): 208-219. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: