[1] | Batista PJ, Chang HY . Long noncoding RNAs: Cellular address codes in development and disease. Cell, 2013,152(6):1298-1307. | [2] | Guttman M, Rinn JL . Modular regulatory principles of large non-coding RNAs. Nature, 2012,482(7385):339-346. | [3] | Ulitsky I , Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell, 2013,154(1):26-46. | [4] | Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature, 2008,455(7209):64-71. | [5] | Ebert MS, Neilson JR, Sharp PA . MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat Methods, 2007,4(9):721-726. | [6] | Ebert MS, Sharp PA . Emerging roles for natural microRNA sponges. Curr Biol, 2010,20(19):R858-861. | [7] | Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I . A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011,147(2):358-369. | [8] | Lu C, Huang YH . Progress in long non-coding RNAs in animals. Hereditas (Beijing), 2017,39(11):1054-1065. | [8] | 路畅, 黄银花 . 动物长链非编码RNA研究进展. 遗传, 2017,39(11):1054-1065. | [9] | Lasda E, Parker R . Circular RNAs: diversity of form and function. RNA, 2014,20(12):1829-1842. | [10] | Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N , Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 2014,56(1):55-66. | [11] | Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, Bindereif A . Exon circularization requires canonical splice signals. Cell Rep, 2015,10(1):103-111. | [12] | Wang Y, Wang ZF . Efficient backsplicing produces translatable circular mRNAs. RNA, 2015,21(2):172-179. | [13] | Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L . Complementary sequence-mediated exon circularization. Cell, 2014,159(1):134-147. | [14] | Liang D, Wilusz JE . Short intronic repeat sequences facilitate circular RNA production. Genes Dev, 2014,28(20):2233-2247. | [15] | Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ . The RNA binding protein quaking regulates formation of circRNAs. Cell, 2015,160(6):1125-1134. | [16] | Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, Le |
[1] |
郝小花, 胡爽, 赵丹, 田连福, 谢子靖, 吴莎, 胡文俐, 雷晗, 李东屏. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2023, 45(9): 845-855. |
[2] |
吕倩雯, 杨永芳. 植物小肽信号生物学功能及其在作物改良中研究进展[J]. 遗传, 2023, 45(9): 813-828. |
[3] |
金良, 陈语婕, 陈勇军. 发育性和癫痫性脑病遗传学病因及诊疗的研究进展[J]. 遗传, 2023, 45(7): 553-567. |
[4] |
于一凡, 欧阳臻, 郭娟, 赵瑜君, 黄璐琦. 植物质体基因工程调控元件研究进展[J]. 遗传, 2023, 45(6): 501-513. |
[5] |
王舜泽, 江丰, 朱东丽, 杨铁林, 郭燕. Hi-C技术在三维基因组学和疾病致病机理研究中的应用[J]. 遗传, 2023, 45(4): 279-294. |
[6] |
张茜, 王子豪, 田烨. 跨组织线粒体应激信号交流调控机体衰老研究进展[J]. 遗传, 2023, 45(3): 187-197. |
[7] |
王承贤, 容益康, 崔敏. 果蝇限制端粒转座子的分子机制[J]. 遗传, 2023, 45(3): 221-228. |
[8] |
吴丹丹, 朱明昆, 方忠艳, 马伟. 植物B染色体的分子结构组成及遗传机制研究进展[J]. 遗传, 2022, 44(9): 772-782. |
[9] |
慕蓉蓉, 牛晴晴, 孙玉强, 梅俊, 苗蒙. 陆地棉MYB类转录因子基因GhTT2克隆及功能初步分析[J]. 遗传, 2022, 44(8): 720-728. |
[10] |
徐思远, 寿佳, 吴强. HS5-1增强子eRNA PEARL对原钙粘蛋白α基因簇的表达调控[J]. 遗传, 2022, 44(8): 695-764. |
[11] |
谢甜, 王梅, 高瑞钰, 苗艳尼, 张燚铭, 蒋婧. 光控诱导重组系统的开发与应用[J]. 遗传, 2022, 44(8): 655-671. |
[12] |
郝艳, 雷富民. 适应性演化的分子遗传机制:以高海拔适应为例[J]. 遗传, 2022, 44(8): 635-654. |
[13] |
姜明亮, 郎红, 李晓楠, 祖野, 赵靖, 彭沈凌, 刘振, 战宗祥, 朴钟云. 植物孤基因研究进展[J]. 遗传, 2022, 44(8): 682-694. |
[14] |
罗熹晨, 刘慧, 刘学英, 李欣欣, 廖红, 傅向东. 植物响应环境变化的长距离信号传导[J]. 遗传, 2022, 44(7): 556-566. |
[15] |
吕雪, 李帮洁, 徐寒梅. 功能性微肽通量发现和功能验证的研究进展[J]. 遗传, 2022, 44(6): 478-490. |
|