[1]Tambo JA, Abdoulaye T. Climate change and agricultural technology adoption: the case of drought tolerant maize in rural Nigeria. Mitig Adapt Strat Glob Chan, 2012, 17(3): 277-292.
[2]Fu FL, Feng ZL, Gao SB, Zhou SF, Li WC. Evaluation and quantitative inheritance of several drought-relative traits in maize. Agri Sci Chin, 2008, 7(3): 280-290.
[3]Lu Y, Hao Z, Xie C, Crossa J, Araus JL, Gao S, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Taba S, Pan G, Li X, Rong T, Zhang S, Xu Y. Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crop Res, 2011, 124(1): 37-45.
[4]Neumann PM. Coping mechanisms for crop plants in drought-prone environments. Ann Bot, 2008, 101(7): 901- 907.
[5]Shuja MN, Ali W, Iqbal A, Ali I, Munir I, Ahmad D, Inamullah, Shaheenshah, Ahmad G, Khan MA, Swati ZA. Maize breeding for marginal lands: Physiological and molecular approach to decipher response and selection of maize recombinant inbred lines (RILs) under water deficit at early growth stage. Afr J Biotechnol, 2011, 10(18): 3521-3527.
[6]Tao D, Mu Y, Fu FL, Li WC. Transformation of maize with trehalose synthase gene cloned from. Saccharomyces cerevisiae Biotechnology, 2008, 7(2): 258-265.
[7]Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124(4): 1854-1865.
[8]Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mantyla E, Palva ET, Van Dijck P, Holmstrom KO. Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol, 2007, 64(4): 371-386.
[9]Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol, 1999, 17(3): 287-291.
[10]Yamaguchi-Shinozaki K, Mino M, Mundy J, Chua NH. Analysis of an ABA-responsive rice gene promoter in transgenic tobacco. Plant Mol Biol, 1990, 15(6): 905-912.
[11]Ono A, Izawa T, Chua NH, Shimamoto K. The rab16B promoter of rice contains two distinct abscisic acid-respon-sive elements. Plant Physiol, 1996, 112(2): 483-491.
[12]Rai M, He C, Wu R. Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice. Transgenic Res, 2009, 18(5): 787-799.
[13]Buchanan CD, Klein PE, Mullet JE. Phylogenetic analysis of 5’-noncoding regions from the ABA-responsive rab16/17 gene family of sorghum, maize and rice provides insight into the composition, organization and function of cis-re-gulatory modules. Genetics, 2004, 168(3): 1639-1654.
[14]Cao X, Costa LM, Biderre-Petit C, Kbhaya B, Dey N, Perez P, McCarty DR, Gutierrez-Marcos JF, Becraft PW. Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize. Plant Physiol, 2007, 143(2): 720-731.
[15]Wu S, Yu Z, Wang F, Li W, Ye C, Li J, Tang J, Ding J, Zhao J, Wang B. Cloning, characterization, and transformation of the phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) in maize (Zea mays L.). Mol Biotechnol, 2007, 36(2): 102-112.
[16]Theologis A, Ecker JR, Palm CJ, Federspiel NA, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman CL, Brooks SY, Buehler E, Chan A, Chao Q, Chen H, Cheuk RF, Chin CW, Chung MK, Conn L, Conway AB, Conway AR, Creasy TH, Dewar K, Dunn P, Etgu P, Feldblyum TV, Feng J, Fong B, Fujii CY, Gill JE, Goldsmith AD, Haas B, Hansen NF, Hughes B, Huizar L, Hunter JL, Jenkins J, Johnson-Hopson C, Khan S, Khaykin E, Kim CJ, Koo HL, Kremenetskaia I, Kurtz DB, Kwan A, Lam B, Langin- Hooper S, Lee A, Lee JM, Lenz CA, Li JH, Li Y, Lin X, Liu SX, Liu ZA, Luros JS, Maiti R, Marziali A, Militscher J, Miranda M, Nguyen M, Nierman WC, Osborne BI, Pai G, Peterson J, Pham PK, Rizzo M, Rooney T, Rowley D, Sakano H, Salzberg SL, Schwartz JR, Shinn P, Southwick AM, Sun H, Tallon LJ, Tambunga G, Toriumi MJ, Town CD, Utterback T, Van Aken S, Vaysberg M, Vysotskaia VS, Walker M, Wu D, Yu G, Fraser CM, Venter JC, Davis RW. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature, 2000, 408(6814): 816-820.
[17]Smith GS, Johnston CM, Cornforth IS. Comparison of nutrient solutions for growth of plants in sand culture. New Phytol, 1983, 94(4): 537-548.
[18]Michel B E, Kaufmann M R. The osmotic potential of polyethylene glycol 6000. Plant Physiol, 1973, 51(5): 914-916.
[19]Fu FL, He J, Zhang ZY, Zhou SF, Zhang SZ, Li WC. Further improvement of N6 medium for callus induction and
[20]plant regeneration from maize immature embryos. Afr J Biotechnol, 2011, 10(14): 2618-2624.
[21]Armstrong CL, Green CE. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta, 1985, 164(2): 207-214.
[22]Jefferson RA, Burgess SM, Hirseh D. beta-glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci USA, 1986, 83(22): 8447-8451.
[23]Koo J, Kim Y, Kim J, Yeom M, Lee IC, Nam HG. A GUS/luciferase fusion reporter for plant gene trapping and for assay of promoter activity with luciferin-dependent control of the reporter protein stability. Plant Cell Physiol, 2007, 48(8): 1121-1131.
[24]Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
[25]Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 2006, 57: 781-803.
[26]Schroeder JI, Kwak JM, Allen GJ. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature, 2001, 410(6826): 327-330.
[27]Xiong LM, Zhu JK. Regulation of abscisic acid biosynthesis. Plant Physiol, 2003, 133(1): 29-36.
[28]Storozhenko S, De Pauw P, Van Montagu M, Inze D, Kushnir S. The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter1. Plant Physiol, 1998, 118(3): 1005-1014.
[29]Martin C, Paz-Ares J. MYB transcription factors in plants. Trend Genet, 1997, 13(2): 67-73.
[30]Lu Y, Li Y, Zhang J, Xiao Y, Yue Y, Duan L, Zhang M, Li Z. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L. ). PLoS ONE, 2013, 8(1): e52126.
[31]Seo M, Peeters AJ, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JA, Koornneef M, Kamiya Y, Koshiba T. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA, 2000, 97(23): 12908-12913. |