[1]Tambo JA, Abdoulaye T. Climate change and agricultural technology adoption: the case of drought tolerant maize in rural Nigeria. Mitig Adapt Strat Glob Chan, 2012, 17(3): 277-292.
[2]Fu FL, Feng ZL, Gao SB, Zhou SF, Li WC. Evaluation and quantitative inheritance of several drought-relative traits in maize. Agri Sci Chin, 2008, 7(3): 280-290.
[3]Lu Y, Hao Z, Xie C, Crossa J, Araus JL, Gao S, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Taba S, Pan G, Li X, Rong T, Zhang S, Xu Y. Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crop Res, 2011, 124(1): 37-45.
[4]Neumann PM. Coping mechanisms for crop plants in drought-prone environments. Ann Bot, 2008, 101(7): 901- 907.
[5]Shuja MN, Ali W, Iqbal A, Ali I, Munir I, Ahmad D, Inamullah, Shaheenshah, Ahmad G, Khan MA, Swati ZA. Maize breeding for marginal lands: Physiological and molecular approach to decipher response and selection of maize recombinant inbred lines (RILs) under water deficit at early growth stage. Afr J Biotechnol, 2011, 10(18): 3521-3527.
[6]Tao D, Mu Y, Fu FL, Li WC. Transformation of maize with trehalose synthase gene cloned from. Saccharomyces cerevisiae Biotechnology, 2008, 7(2): 258-265.
[7]Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124(4): 1854-1865.
[8]Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mantyla E, Palva ET, Van Dijck P, Holmstrom KO. Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol, 2007, 64(4): 371-386.
[9]Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol, 1999, 17(3): 287-291.
[10]Yamaguchi-Shinozaki K, Mino M, Mundy J, Chua NH. Analysis of an ABA-responsive rice gene promoter in transgenic tobacco. Plant Mol Biol, 1990, 15(6): 905-912.
[11]Ono A, Izawa T, Chua NH, Shimamoto K. The rab16B promoter of rice contains two distinct abscisic acid-respon-sive elements. Plant Physiol, 1996, 112(2): 483-491.
[12]Rai M, He C, Wu R. Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice. Transgenic Res, 2009, 18(5): 787-799.
[13]Buchanan CD, Klein PE, Mullet JE. Phylogenetic analysis of 5’-noncoding regions from the ABA-responsive rab16/17 gene family of sorghum, maize and rice provides insight into the composition, organization and function of cis-re-gulatory modules. Genetics, 2004, 168(3): 1639-1654.
[14]Cao X, Costa LM, Biderre-Petit C, Kbhaya B, Dey N, Perez P, McCarty DR, Gutierrez-Marcos JF, Becraft PW. Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize. Plant Physiol, 2007, 143(2): 720-731.
[15]Wu S, Yu Z, Wang F, Li W, Ye C, Li J, Tang J, Ding J, Zhao J, Wang B. Cloning, characterization, and transformation of the phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) in maize (Zea mays L.). Mol Biotechnol, 2007, 36(2): 102-112.
[16]Theologis A, Ecker JR, Palm CJ, Federspiel NA, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman CL, Brooks SY, Buehler E, Chan A, Chao Q, Chen H, Cheuk RF, Chin CW, Chung MK, Conn L, Conway AB, Conway AR, Creasy TH, Dewar K, Dunn P, Etgu P |