遗传 ›› 2016, Vol. 38 ›› Issue (4): 300-313.doi: 10.16288/j.yczz.15-385
郑敏, 麻骏武
收稿日期:
2015-09-10
修回日期:
2015-11-25
出版日期:
2016-04-20
发布日期:
2016-04-20
通讯作者:
麻骏武,博士,副教授,硕士生导师,研究方向:动物遗传育种与繁殖。E-mail: ma_junwu@hotmail.com
作者简介:
郑敏,硕士研究生,专业方向:动物遗传育种与繁殖。E-mail: wuzhizhengmin@163.com
基金资助:
Min Zheng, Junwu Ma
Received:
2015-09-10
Revised:
2015-11-25
Online:
2016-04-20
Published:
2016-04-20
摘要: 痛风是由高尿酸血症引发的一种常见炎性关节炎,受遗传因素和环境因素共同作用。早期研究表明,PRPS1和HPRT1等单基因稀有突变会引起嘌呤合成代谢紊乱,从而引发高尿酸血症和痛风。近年来,全基因组关联分析(Genome-wide association studies,GWAS)已检出多个导致高尿酸血症和痛风的易感位点及相关候选基因。其中SLC2A9、SLC22A11和SLC22A12基因功能缺失性突变可引起遗传性低尿酸血症,而过表达则会加强尿酸的重吸收。ABCG2、SLC17A1和SLC17A3基因功能缺陷型变异会降低肾脏和肠道对尿酸的排泄量。因此,诱发尿酸排泄障碍(高重吸收和低排泄)的基因变异是影响高尿酸血症和痛风的主要遗传因素。另外,抑制-激活生长因子系统、转录因子、细胞骨架以及基因和环境的互作等因素也一定程度影响血液尿酸水平。在中国汉族人群中,两个新发现的易感基因RFX3和KCNQ1可能造成免疫应答受损和胰岛B细胞功能缺陷,从而直接或间接引起高尿酸酸血症和痛风。本文系统综述了高尿酸血症和痛风的遗传学研究,以促进人们对高尿酸血症和痛风发病机理的理解。
郑敏, 麻骏武. 高尿酸血症和痛风的遗传学研究进展[J]. 遗传, 2016, 38(4): 300-313.
Min Zheng, Junwu Ma. Research progress in the genetics of hyperuricaemia and gout[J]. HEREDITAS(Beijing), 2016, 38(4): 300-313.
[1] Merriman TR. An update on the genetic architecture of hyperuricemia and gout. Arthritis Res Ther , 2015, 17(1): 98. [2] Merriman TR, Choi HK, Dalbeth N. The genetic basis of gout. Rheum Dis Clin North Am , 2014, 40(2): 279-290. [3] Merriman TR, Dalbeth N. The genetic basis of hyperuricaemia and gout. Joint Bone Spine , 2011, 78(1): 35-40. [4] Reginato AM, Mount DB, Yang I, Choi HK. The genetics of hyperuricaemia and gout. Nat Rev Rheumatol , 2012, 8(10): 610-621. [5] Zhu YY, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum , 2011, 63(10): 3136-3141. [6] Li J, Li YL, Huang Y. Epidemiologic study of hyperuricemia. Chin J Cardiovasc Med , 2010, 15(6): 415-417. 李静, 李雨璘, 黄艳. 高尿酸血症的流行病学研究. 中国心血管杂志, 2010, 15(6): 415-417. [7] Tang YS, Liu H, Liu BC. Relfections on the basis of changes: theepidemiological data of hyperuricemia. Drug Eval , 2015(7): 8-13. 唐羽裳, 刘宏, 刘必成. 高尿酸血症流行病学数据的变迁及反思. 药品评价, 2015(7): 8-13. [8] Oda M, Satta Y, Takenaka O, Takahata N. Loss of urate oxidase activity in hominoids and its evolutionary implications. Mol Bio Evol , 2002, 19(5): 640-653. [9] Johnson RJ, Titte S, Cade JR, Rideout BA, Oliver WJ. Uric acid, evolution and primitive cultures. Semin Nephrol , 2005, 25(1): 3-8. [10] Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, Knott SA, Kolcic I, Polasek O, Graessler J, Wilson JF, Marinaki A, Riches PL, Shu XH, Janicijevic B, Smolej-Narancic N, Gorgoni B, Morgan J, Campbell S, Biloglav Z, Barac-Lauc L, Pericic M, Klaric IM, Zgaga L, Skaric-Juric T, Wild SH, Richardson WA, Hohenstein P, Kimber CH, Tenesa A, Donnelly LA, Fairbanks LD, Aringer M, McKeigue PM, Ralston SH, Morris AD, Rudan P, Hastie ND, Campbell H, Wright AF. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet , 2008, 40(4): 437-442. [11] Jordan KM, Cameron JS, Snaith M, Zhang WY, Doherty M, Seckl J, Hingorani A, Jaques R, Nuki G. British Society for R, British Health Professionals in Rheumatology Standards G, Audit Working G. British Society for Rheumatology and British Health Professionals in Rheumatology guideline for the management of gout. Rheumatology (Oxford) , 2007, 46(8): 1372-1374. [12] Khanna D, Fitzgerald JD, Khanna PP, Bae S, Singh MK, Neogi T, Pillinger MH, Merill J, Lee S, Prakash S, Kaldas M, Gogia M, Perez-Ruiz F, Taylor W, Lioté F, Choi H, Singh JA, Dalbeth N, Kaplan S, Niyyar V, Jones D, Yarows SA, Roessler B, Kerr G, King C, Levy G, Furst DE, Lawrence Edwards N, Mandell B, Ralph Schumacher H, Robbins M, Wenger N, Terkeltaub R. 2012 American College of Rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken) , 2012, 64(10): 1431-1446. [13] Wilk JB, Djousse L, Borecki I, Atwood LD, Hunt SC, Rich SS, Eckfeldt JH, Arnett DK, Rao DC, Myers RH. Segregation analysis of serum uric acid in the NHLBI Family Heart Study. Hum Genet , 2000, 106(3): 355-359. [14] Hediger MA, Johnson RJ, Miyazaki H, Endou H. Molecular physiology of urate transport. Physiology , 2005, 20(2): 125-133. [15] Köttgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, Pistis G, Ruggiero D, O'Seaghdha CM, Haller T, Yang Q, Tanaka T, Johnson AD, Kutalik Z, Smith AV, Shi J, Struchalin M, Middelberg RP, Brown MJ, Gaffo AL, Pirastu N, Li G, Hayward C, Zemunik T, Huffman J, Yengo L, Zhao JH, Demirkan A, Feitosa MF, Liu X, Malerba G, Lopez LM, van der Harst P, Li X, Kleber ME, Hicks AA, Nolte IM, Johansson A, Murgia F, Wild SH, Bakker SJ, Peden JF, Dehghan A, Steri M, Tenesa A, Lagou V, Salo P, Mangino M, Rose LM, Lehtimäki T, Woodward OM, Okada Y, Tin A, Müller C, Oldmeadow C, Putku M, Czamara D, Kraft P, Frogheri L, Thun GA, Grotevendt A, Gislason GK, Harris TB, Launer LJ, McArdle P, Shuldiner AR, Boerwinkle E, Coresh J, Schmidt H, Schallert M, Martin NG, Montgomery GW, Kubo M, Nakamura Y, Tanaka T, Munroe PB, Samani NJ, Jacobs DR, Jr., Liu K, D'Adamo P, Ulivi S, Rotter JI, Psaty BM, Vollenweider P, Waeber G, Campbell S, Devuyst O, Navarro P, Kolcic I, Hastie N, Balkau B, Froguel P, Esko T, Salumets A, Khaw KT, Langenberg C, Wareham NJ, Isaacs A, Kraja A, Zhang Q, Wild PS, Scott RJ, Holliday EG, Org E, Viigimaa M, Bandinelli S, Metter JE, Lupo A, Trabetti E, Sorice R, Döring A, Lattka E, Strauch K, Theis F, Waldenberger M, Wichmann HE, Davies G, Gow AJ, Bruinenberg M, LifeLines Cohort S, Stolk RP, Kooner JS, Zhang W, Winkelmann BR, Boehm BO, Lucae S, Penninx BW, Smit JH, Curhan G, Mudgal P, Plenge RM, Portas L, Persico I, Kirin M, Wilson JF, Mateo Leach I, van Gilst WH, Goel A, Ongen H, Hofman A, Rivadeneira F, Uitterlinden AG, Imboden M, von Eckardstein A, Cucca F, Nagaraja R, Piras MG, Nauck M, Schurmann C, Budde K, Ernst F, Farrington SM, Theodoratou E, Prokopenko I, Stumvoll M, Jula A, Perola M, Salomaa V, Shin SY, Spector TD, Sala C, Ridker PM, Kähönen M, Viikari J, Hengstenberg C, Nelson CP, Consortium CA, Consortium D, Consortium I, Consortium M, Meschia JF, Nalls MA, Sharma P, Singleton AB, Kamatani N, Zeller T, Burnier M, Attia J, Laan M, Klopp N, Hillege HL, Kloiber S, Choi H, Pirastu M, Tore S, Probst-Hensch NM, Völzke H, Gudnason V, Parsa A, Schmidt R, Whitfield JB, Fornage M, Gasparini P, Siscovick DS, Polašek O, Campbell H, Rudan I, Bouatia-Naji N, Metspalu A, Loos RJ, van Duijn CM, Borecki IB, Ferrucci L, Gambaro G, Deary IJ, Wolffenbuttel BH, Chambers JC, März W, Pramstaller PP, Snieder H, Gyllensten U, Wright AF, Navis G, Watkins H, Witteman JC, Sanna S, Schipf S, Dunlop MG, Tönjes A, Ripatti S, Soranzo N, Toniolo D, Chasman DI, Raitakari O, Kao WH, Ciullo M, Fox CS, Caulfield M, Bochud M, Gieger C. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet , 2013, 45(2): 145-154. [16] Scott DGI, Watts RA. Landmark papers in rheumatology. London: Oxford University Press, 2015: 237-241. [17] Yamada Y, Yamada K, Nomura N, Yamano A, Kimura R, Naiki M, Fukushi D, Wakamatsu N, Taniguchi A, Yamaoka N, Kaneko K, Fujimori S. Molecular analysis of X-linked inborn errors of purine metabolism: HPRT1 and PRPS1 mutations. Nucleos Nucleot Nucl Aci , 2011, 30(12): 1272-1275. [18] Becker MA, Meyer LJ, Wood AW, Edwin Seegmiller J. Purine overproduction in man associated with increased phosphoribosylpyrophosphate synthetase activity. Science , 1973, 179(4078): 1123-1126. [19] Sperling O, Eilam G, Sara-Persky-Brosh, De Vries A. Accelerated erythrocyte 5-phosphoribosyl-1-pyrophosphate synthesis. A familial abnormality associated with excessive uric acid production and gout. Biochem Med , 1972, 6(4): 310-316. [20] Chen P, Li JZ, Ma J, Teng MK, Li X. A small disturbance, but a serious disease: the possible mechanism of D52H-mutant of human PRS1 that causes gout. IUBMB Life , 2013, 65(6): 518-525. [21] Moran R, Kuilenburg AB, Duley J, Nabuurs SB, Retno-Fitri A, Christodoulou J, Roelofsen J, Yntema HG, Friedman NR, van Bokhoven H, de Brouwer AP. Phosphoribosylpyrophosphate synthetase superactivity and recurrent infections is caused by a p.Val142Leu mutation in PRS-I. Am J Med Genet A , 2012, 158A(2): 455-460. [22] Synofzik M, vom Hagen JM, Haack TB, Wilhelm C, Lindig T, Beck-Wödl S, Nabuurs SB, van Kuilenburg AB, de Brouwer AP, Schöls L. X-linked Charcot-Marie-Tooth disease, Arts syndrome, and prelingual non-syndromic deafness form a disease continuum: evidence from a family with a novel PRPS1 mutation. Orphanet J Rare Dis , 2014, 9: 24. [23] Mittal R, Patel K, Mittal J, Chan B, Yan D, Grati M, Liu XZ. Association of PRPS1 Mutations with Disease Phenotypes. Dis Markers , 2015, 2015: 127013. [24] Kelley WN, Rosenbloom FM, Henderson JF, Seegmiller JE. A specific enzyme defect in gout associated with overproduction of uric acid. Proc Natl Acad Sci USA , 1967, 57(6): 1735-1739. [25] Ding H, Yue LJ, Yang CL. Research progress in hypoxanthine-guanine phosphoribosyltransferase. Hereditas (Beijing) , 2013, 35(8): 948-954. 丁慧, 岳丽杰, 杨春兰. 次黄嘌呤鸟嘌呤磷酸核糖转移酶研究进展. 遗传, 2013, 35(8): 948-954. [26] Kostalova E, Pavelka K, Vlaskova H, Stiburkova B. Hyperuricemia and gout due to deficiency of hypoxanthine-guanine phosphoribosyltransferase in female carriers: new insight to differential diagnosis. Clin Chimi Acta , 2015, 440: 214-217. [27] Yamada Y, Yamada K, Nomura N, Yamano A, Kimura R, Tomida S, Naiki M, Wakamatsu N. Molecular analysis of two enzyme genes, HPRT1 and PRPS1 , causing X-linked inborn errors of purine metabolism. Nucleos Nucleot Nucl , 2010, 29(4-6): 291-294. [28] Alanazi M, Al-Arfaj AS, Abduljaleel Z, Al-Arfaj HF, Parine NR, Shaik JP, Khan Z, Ali Khan Pathan A. Novel hypoxanthine guanine phosphoribosyltransferase gene mutations in Saudi Arabian hyperuricemia patients. Biomed Res Int , 2014, 2014: 290325. [29] Fu R, Sutcliffe D, Zhao H, Huang XY, Schretlen DJ, Benkovic S, Jinnah HA. Clinical severity in Lesch-Nyhan disease: the role of residual enzyme and compensatory pathways. Mol Genet Metab , 2015, 114(1): 55-61. [30] Stibůrková B, Pavlíková M, Sokolová J, Kožich V. Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration. PLoS One , 2014, 9(5): e97646. [31] Fatima T, Altaf S, Phipps-Green A, Topless R, Flynn TJ, Stamp LK, Dalbeth N, Merriman TR. Association analysis of the beta-3 adrenergic receptor Trp64Arg ( rs4994 ) polymorphism with urate and gout. Rheumatol Int , 2015: 1-7. [32] Masuo K, Katsuya T, Fu YX, Rakugi H, Ogihara T, Tuck ML. Lys418Asn polymorphism of the α2-adrenoceptor gene relates to serum uric acid levels but not to insulin sensitivity. Hypertension , 2005, 46(1): 144-150. [33] van der Harst P, Bakker SJL, de Boer RA, Wolffenbuttel BHR, Johnson T, Caulfield MJ, Navis G. Replication of the five novel loci for uric acid concentrations and potential mediating mechanisms. Hum Mol Genet , 2010, 19(2): 387-395. [34] Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, Ahmadi K, Dobson RJ, Marçano ACB, Hajat C, Burton P, Deloukas P, Brown M, Connell JM, Dominiczak A, Mark Lathrop G, Webster J, Farrall M, Spector T, Samani NJ, Caulfield MJ, Munroe PB. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet , 2008, 82(1): 139-149. [35] Li SG, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, Lai S, Dei M, Orrù M, Albai G. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet , 2007, 3(11): e194. [36] Dehghan A, Köttgen A, Yang Q, Hwang SJ, Kao WHL, Rivadeneira F, Boerwinkle E, Levy D, Hofman A, Astor BC, Benjamin EJ, van Duijn CM, Witteman JC, Coresh J, Fox CS. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet , 2008, 372(9654): 1953-1961. [37] Döring A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, Fischer G, Henke K, Klopp N, Kronenberg F, Paulweber B, Pfeufer A, Rosskopf D, Völzke H, Illig T, Meitinger T, Wichmann HE, Meisinger C. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet , 2008, 40(4): 430-436. [38] Saroja Voruganti V, Nath SD, Cole SA, Thameem F, Jowett JB, Bauer R, MacCluer JW, Blangero J, Comuzzie AG, Abboud HE, Arar NH. Genetics of variation in serum uric acid and cardiovascular risk factors in Mexican Americans. J Clin Endocrinol Metab , 2009, 94(2): 632-638. [39] Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, Mangino M, Albrecht E, Wallace C, Farrall M, Johansson A, Nyholt DR, Aulchenko Y, Beckmann JS, Bergmann S, Bochud M, Brown M, Campbell H, Consortium E, Connell J, Dominiczak A, Homuth G, Lamina C, McCarthy MI, Consortium E, Meitinger T, Mooser V, Munroe P, Nauck M, Peden J, Prokisch H, Salo P, Salomaa V, Samani NJ, Schlessinger D, Uda M, Völker U, Waeber G, Waterworth D, Wang-Sattler R, Wright AF, Adamski J, Whitfield JB, Gyllensten U, Wilson JF, Rudan I, Pramstaller P, Watkins H, Consortium P, Doering A, Wichmann HE, Study K, Spector TD, Peltonen L, Völzke H, Nagaraja R, Vollenweider P, Caulfield M, Wtccc, Illig T, Gieger C. Meta-analysis of 28, 141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet , 2009, 5(6): e1000504. [40] Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Ikebuchi Y, Ito K, Kusanagi Y, Chiba T, Tadokoro S, Takada Y, Oikawa Y, Inoue H, Suzuki K, Okada R, Nishiyama J, Domoto H, Watanabe S, Fujita M, Morimoto Y, Naito M, Nishio K, Hishida A, Wakai K, Asai Y, Niwa K, Kamakura K, Nonoyama S, Sakurai Y, Hosoya T, Kanai Y, Suzuki H, Hamajima N, Shinomiya N. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med , 2009, 1(5): 5ra11. [41] Yang Q, Köttgen A, Dehghan A, Smith AV, Glazer NL, Chen MH, Chasman DI, Aspelund T, Eiriksdottir G, Harris TB, Launer L, Nalls M, Hernandez D, Arking DE, Boerwinkle E, Grove ML, Li M, Linda Kao WH, Chonchol M, Haritunians T, Li G, Lumley T, Psaty BM, Shlipak M, Hwang SJ, Larson MG, O'Donnell CJ, Upadhyay A, van Duijn CM, Hofman A, Rivadeneira F, Stricker B, Uitterlinden AG, Paré G, Parker AN, Ridker PM, Siscovick DS, Gudnason V, Witteman JC, Fox CS, Coresh J. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet , 2010, 3(6): 523-530. [42] Cummings N, Dyer TD, Kotea N, Kowlessur S, Chitson P, Zimmet P, Blangero J, Jowett JBM. Genome-wide scan identifies a quantitative trait locus at 4p15.3 for serum urate. Eur J Hum Genet , 2010, 18(11): 1243-1247. [43] Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, Nakamura Y, Kamatani N. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet , 2010, 42(3): 210-215. [44] Charles BA, Shriner D, Doumatey A, Chen GJ, Zhou J, Huang HX, Herbert A, Gerry NP, Christman MF, Adeyemo A, Rotimi CN. A genome-wide association study of serum uric acid in African Americans. BMC Med Genomics , 2011, 4: 17. [45] Liu CT, Garnaas MK, Tin A, Kottgen A, Franceschini N, Peralta CA, de Boer IH, Lu XN, Atkinson E, Ding JZ, Nalls M, Shriner D, Coresh J, Kutlar A, Bibbins-Domingo K, Siscovick D, Akylbekova E, Wyatt S, Astor B, Mychaleckjy J, Li M, Reilly MP, Townsend RR, Adeyemo A, Zonderman AB, de Andrade M, Turner ST, Mosley TH, Harris TB, Rotimi CN, Liu YM, Kardia SLR, Evans MK, Shlipak MG, Kramer H, Flessner MF, Dreisbach AW, Goessling W, Cupples LA, Kao WL, Fox CS. Genetic association for renal traits among participants of African ancestry reveals new loci for renal function. PLoS Genet , 2011, 7(9): e1002264. [46] Tin A, Woodward OM, Kao WHL, Liu CT, Lu XN, Nalls MA, Shriner D, Semmo M, Akylbekova EL, Wyatt SB, Hwang SJ, Yang Q, Zonderman AB, Adeyemo AA, Palmer C, Meng Y, Reilly M, Shlipak MG, Siscovick D, Evans MK, Rotimi CN, Flessner MF, Köttgen M, Adruenne Cupples L, Fox CS, Köttgen A. Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Hum Mol Genet , 2011, 20(20): 4056-4068. [47] Sulem P, Gudbjartsson DF, Walters GB, Helgadottir HT, Helgason A, Gudjonsson SA, Zanon C, Besenbacher S, Bjornsdottir G, Magnusson OT, Magnusson G, Hjartarson E, Saemundsdottir J, Gylfason A, Jonasdottir A, Holm H, Karason A, Rafnar T, Stefansson H, Andreassen OA, Pedersen JH, Pack AI, de Visser MCH, Kiemeney LA, Geirsson AJ, Eyjolfsson GI, Olafsson I, Kong A, Masson G, Jonsson H, Thorsteinsdottir U, Jonsdottir I, Stefansson K. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat Genet , 2011, 43(11): 1127-1130. [48] Shin J, Kim YY, Kong MY, Lee C. Genetic architecture for susceptibility to gout in the KARE cohort study. J Hum Genet , 2012, 57(6): 379-384. [49] Okada Y, Sim X, Go MJ, Wu JY, Gu DF, Takeuchi F, Takahashi A, Maeda S, Tsunoda T, Chen P, Lim SC, Wong TY, Liu JJ, Young TL, Aung T, Seielstad M, Teo YY, Kim YJ, Lee JY, Han BG, Kang D, Chen CH, Tsai FJ, Chang LC, Fann SJC, Mei H, Rao DC, Hixson JE, Chen SF, Katsuya T, Isono M, Ogihara T, Chambers JC, Zhang WH, Kooner JS, KidneyGen C, Consortium C, Albrecht E, Consortium G, Yamamoto K, Kubo M, Nakamura Y, Kamatani N, Kato N, He J, Chen YT, Cho YS, Tai ES, Tanaka T. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat Genet , 2012, 44(8): 904-909. [50] Yang BY, Mo ZN, Wu C, Yang HD, Yang XB, He YF, Gui LX, Zhou L, Guo H, Zhang XM, Yuan J, Dai XY, Li J, Qiu GK, Huang SL, Deng QF, Feng YY, Guan L, Hu D, Zhang X, Wang T, Zhu J, Min XW, Lang MJ, Li DF, Hu FB, Lin DX, Wu TC, He MA. A genome-wide association study identifies common variants influencing serum uric acid concentrations in a Chinese population. BMC Med Genomics , 2014, 7: 10. [51] Sun X, Jiang F, Zhang R, Tang SS, Chen M, Peng DF, Yan J, Wang T, Wang SY, Bao YQ, Hu C, Jia WP. Serum uric acid levels are associated with polymorphisms in the SLC2A9 , SF1 , and GCKR genes in a Chinese population. Acta Pharmacol Sin , 2014, 35(11): 1421-1427. [52] Voruganti VS, Franceschini N, Haack K, Laston S, MacCluer JW, Umans JG, Comuzzie AG, North KE, Cole SA. Replication of the effect of SLC2A9 genetic variation on serum uric acid levels in American Indians. Eur J Hum Genet , 2014, 22(7): 938-943. [53] Li CG, Li ZQ, Liu SG, Wang C, Han L, Cui LL, Zhou JG, Zou HJ, Liu Z, Chen JH, Cheng XY, Zhou ZW, Ding CC, Wang M, Chen T, Cui Y, He HM, Zhang KK, Yin CC, Wang YL, Xing SC, Li BJ, Ji J, Jia ZT, Ma LD, Niu JP, Xin Y, Liu T, Chu N, Yu Q, Ren W, Wang XF, Zhang AQ, Sun YP, Wang HL, Lu J, Li YY, Qing YF, Chen G, Wang YG, Zhou L, Niu HT, Liang J, Dong Q, Li XD, Mi QS, Shi YY. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese. Nat Commun , 2015, 6: 7041. [54] Wright AF, Rudan I, Hastie ND, Campbell H. A 'complexity' of urate transporters. Kidney Int , 2010, 78(5): 446-452. [55] Augustin R, Carayannopoulos MO, Dowd LO, Phay JE, Moley JF, Moley KH. Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. J Biol Chem , 2004, 279(16): 16229-16236. [56] Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, Wiriyasermkul P, Kikuchi Y, Oda T, Nishiyama J, Nakamura T, Morimoto Y, Kamakura K, Sakurai Y, Nonoyama S, Kanai Y, Shinomiya N. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet , 2008, 83(6): 744-751. [57] Anzai N, Ichida K, Jutabha P, Kimura T, Babu E, Jin CJ, Srivastava S, Kitamura K, Hisatome I, Endou H, Sakurai H. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem , 2008, 283(40): 26834-26838. [58] McArdle PF, Parsa A, Chang YPC, Weir MR, O'Connell JR, Mitchell BD, Shuldiner AR. Association of a common nonsynonymous variant in GLUT9 with serum uric acid levels in old order amish. Arthritis Rheum , 2008, 58(9): 2874-2881. [59] Hollis-Moffatt JE, Xu X, Dalbeth N, Merriman ME, Topless R, Waddell C, Gow PJ, Harrison AA, Highton J, Jones PBB, Stamp LK, Merriman TR. Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand Mäori, Pacific Island, and Caucasian case-control sample sets. Arthritis Rheum , 2009, 60(11): 3485-3492. [60] Urano W, Taniguchi A, Anzai N, Inoue E, Sekita C, Endou H, Kamatani N, Yamanaka H. Association between GLUT9 and gout in Japanese men. Ann Rheum Dis , 2010, 69(5): 932-933. [61] Forcet C, Stein E, Pays L, Corset V, Llambi F, Tessier-Lavigne M, Mehlen P. Netrin-1-mediated axon outgrowth requires deleted in colorectal cancer-dependent MAPK activation. Nature , 2002, 417(6887): 443-447. [62] Graessler J, Graessler A, Unger S, Kopprasch S, Tausche AK, Kuhlisch E, Schroeder HE. Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum , 2006, 54(1): 292-300. [63] Hagos Y, Stein D, Ugele B, Burckhardt G, Bahn A. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol , 2007, 18(2): 430-439. [64] Ichida K. What lies behind serum urate concentration? Insights from genetic and genomic studies. Genome Med , 2009, 1(12): 118. [65] Sakiyama M, Matsuo H, Shimizu S, Nakashima H, Nakayama A, Chiba T, Naito M, Takada T, Suzuki H, Hamajima N, Ichida K, Shimizu T, Shinomiya N. A common variant of organic anion transporter 4 ( OAT4/SLC22A11 ) gene is associated with renal underexcretion type gout. Drug Metab Pharmacokinet , 2014, 29(2): 208-210. [66] Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA , 2009, 106(25): 10338-10342. [67] Hosomi A, Nakanishi T, Fujita T, Tamai I. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS One , 2012, 7(2): e30456. [68] Reimer RJ, Edwards RH. Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflügers Arch , 2004, 447(5): 629-635. [69] Urano W, Taniguchi A, Anzai N, Inoue E, Kanai Y, Yamanaka M, Endou H, Kamatani N, Yamanaka H. Sodium- dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout. Ann Rheum Dis , 2010, 69(6): 1232-1234. [70] Chiba T, Matsuo H, Kawamura Y, Nagamori S, Nishiyama T, Wei L, Nakayama A, Nakamura T, Sakiyama M, Takada T, Taketani Y, Suma S, Naito M, Oda T, Kumagai H, Moriyama Y, Ichida K, Shimizu T, Kanai Y, Shinomiya N. NPT1/ SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis Rheumatol , 2015, 67(1): 281-287. [71] Jutabha P, Anzai N, Kitamura K, Taniguchi A, Kaneko S, Yan K, Yamada H, Shimada H, Kimura T, Katada T, Fukutomi T, Tomita K, Urano W, Yamanaka H, Seki G, Fujita T, Moriyama Y, Yamada A, Uchida S, Wempe MF, Endou H, Sakurai H. Human sodium phosphate transporter 4 (hNPT4/ SLC17A3 ) as a common renal secretory pathway for drugs and urate. J Biol Chem , 2010, 285(45): 35123-35132. [72] Jutabha P, Anzai N, Kimura T, Taniguchi A, Urano W, Yamanaka H, Endou H, Sakurai H. Functional analysis of human sodium-phosphate transporter 4 (NPT4/ SLC17A3 ) polymorphisms. J Pharmacol Sci , 2011, 115(2): 249-253. [73] Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H. PDZK1: I. A major scaffolder in brush borders of proximal tubular cells1. Kidney Int , 2003, 64(5): 1733-1745. [74] Takada Y, Matsuo H, Nakayama A, Sakiyama M, Hishida A, Okada R, Sakurai Y, Shimizu T, Ichida K, Shinomiya N. Common variant of PDZK1, adaptor protein gene of urate transporters, is not associated with gout. J Rheumatol , 2014, 41(11): 2330-2331. [75] Bärlund M, Monni O, Weaver JD, Kauraniemi P, Sauter G, Heiskanen M, Kallioniemi OP, Kallioniemi A. Cloning of BCAS3 (17q23) and BCAS4 (20q13) genes that undergo amplification, overexpression, and fusion in breast cancer. Genes , Chromosomes Cancer , 2002, 35(4): 311-317. [76] Than BLN, Goos JACM, Sarver AL, O'Sullivan MG, Rod A, Starr TK, Fijneman RJA, Meijer GA, Zhao L, Zhang Y, Largaespada DA, Scott PM, Cormier RT. The role of KCNQ1 in mouse and human gastrointestinal cancers. Oncogene , 2014, 33(29): 3861-3868. [77] Ait-Lounis A, Bonal C, Seguín-Estévez Q, Schmid CD, Bucher P, Herrera PL, Durand B, Meda P, Reith W. The transcription factor Rfx3 regulates β-cell differentiation, function, and glucokinase expression. Diabetes , 2010, 59(7): 1674-1685. [78] Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, Hirota Y, Mori H, Jonsson A, Sato Y, Yamagata K, Hinokio Y, Wang HY, Tanahashi T, Nakamura N, Oka Y, Iwasaki N, Iwamoto Y, Yamada Y, Seino Y, Maegawa H, Kashiwagi A, Takeda J, Maeda E, Shin HD, Cho YM, Park KS, Lee HK, Ng MCY, Ma RCW, So WY, Chan JCN, Lyssenko V, Tuomi T, Nilsson P, Groop L, Kamatani N, Sekine A, Nakamura Y, Yamamoto K, Yoshida T, Tokunaga K, Itakura M, Makino H, Nanjo K, Kadowaki T, Kasuga M. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet , 2008, 40(9): 1092-1097. [79] Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G M, Willer CJ, Raychaudhuri S, McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L, SegrèA V, van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson R, Bennett AJ, Blagieva R, Boerwinkle E, Bonnycastle LL, Boström KB, Bravenboer B, Bumpstead S, Burtt NP, Charpentier G, Chines PS, Cornelis M, Couper DJ, Crawford G, Doney ASF, Elliott KS, Elliott AL, Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PRV, Jørgensen T, Kao WHL, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M, Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken MA, Narisu N, Nilsson P, Owen KR, Payne F, Perry JRB, Petersen AK, Platou C, Proença C, Prokopenko I, Rathmann W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P, Sigurdsson G, Sparsø T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand B, Tichet J, Tuomi T, van Dam RM, van Haeften TW, van Herpt T, van Vliet-Ostaptchouk JV, Walters GB, Weedon MN, Wijmenga C, Witteman J, Investigators M, Consortium G, Bergman RN, Cauchi S, Collins FS, Gloyn AL, Gyllensten U, Hansen T, Hide WA, Hitman GA, Hofman A, Hunter DJ, Hveem K, Laakso M, Mohlke KL, Morris AD, Palmer CNA, Pramstaller PP, Rudan I, Sijbrands E, Stein LD, Tuomilehto J, Uitterlinden A, Walker M, Wareham NJ, Watanabe RM, Abecasis GR, Boehm BO, Campbell H, Daly MJ, Hattersley AT, Hu FB, Meigs JB, Pankow JS, Pedersen O, Wichmann HE, Barroso I, Florez JC, Frayling TM, Groop L, Sladek R, Thorsteinsdottir U, Wilson JF, Illig T, Froguel P, van Duijn CM, Stefansson K, Altshuler D, Boehnke M, McCarthy MI. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet , 2010, 42(7): 579-589. [80] Hamajima N, Naito M, Okada R, Kawai S, Yin G, Morita E, Higashibata T, Tamura T, Nakagawa H, Matsuo H, Mori A, Wakai K. Significant interaction between LRP2 rs2544390 in intron 1 and alcohol drinking for serum uric acid levels among a Japanese population. Gene , 2012, 503(1): 131-136. [81] Yamanaka H, Kamatani N, Hakoda M, Terai C, Kawaguchi R, Kashiwazaki S. Analysis of the genotypes for aldehyde dehydrogenase 2 in Japanese patients with primary gout. Adv Exp Med Biol , 1994, 370: 53-56. [82] Vasiliou V, Sandoval M, Backos DS, Jackson BC, Chen Y, Reigan P, Lanaspa MA, Johnson RJ, Koppaka V, Thompson DC. ALDH16A1 is a novel non-catalytic enzyme that may be involved in the etiology of gout via protein-protein interactions with HPRT1. Chem Biol Interact , 2013, 202(1-3): 22-31. [83] Choi HK, Curhan G. Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ , 2008, 336(7639): 309-312. [84] Dalbeth N, House ME, Gamble GD, Horne A, Pool B, Purvis L, Stewart A, Merriman M, Cadzow M, Phipps- Green A, Merriman TR. Population-specific influence of SLC2A9 genotype on the acute hyperuricaemic response to a fructose load. Ann Rheum Dis , 2013, 72(11): 1868-1873. |
[1] | 宗媛,高彩霞. 碱基编辑系统研究进展[J]. 遗传, 2019, 41(9): 777-800. |
[2] | 薛鹏, 蒋涛, 沈兴家. m 6A修饰及其对病毒复制过程调控研究进展[J]. 遗传, 2019, 41(5): 404-412. |
[3] | 朱亚男, 敖英, 李斌, 万阳, 汪晖. 足细胞发育异常及相关肾脏疾病研究进展[J]. 遗传, 2018, 40(2): 116-125. |
[4] | 杨莹,陈宇晟,孙宝发,杨运桂. RNA甲基化修饰调控和规律[J]. 遗传, 2018, 40(11): 964-976. |
[5] | 张笑, 贾桂芳. RNA表观遗传修饰:N6-甲基腺嘌呤[J]. 遗传, 2016, 38(4): 275-288. |
[6] | 丁慧 岳丽杰 杨春兰. 次黄嘌呤鸟嘌呤磷酸核糖转移酶研究进展[J]. 遗传, 2013, 35(8): 948-954. |
[7] | 李语丽 于军 宋述慧. RNA中6-甲基腺嘌呤的研究进展[J]. 遗传, 2013, 35(12): 1340-1351. |
[8] | 沈佳薇,胡晓菡,师咏勇. 全基因组基因-基因相互作用研究现状[J]. 遗传, 2011, 33(8): 820-828. |
[9] | 杨英,鲁向锋. 冠心病全基因组关联研究进展[J]. 遗传, 2010, 32(2): 97-104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: