[1] Kendrick RE, Kronenberg GHM. Photomorphogenesis in plants. 2nd ed. Dordrecht: Kluwer Academic Publishers, 1994. [2] Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light- regulated plant growth and development. Curr Top Dev Biol , 2010, 91(1): 29-66. [3] Christie JM, Blackwood L, Petersen J, Sullivan S. Plant flavoprotein photoreceptors. Plant Cell Physiol , 2015, 56(3): 401-413. [4] Chen M, Chory J. Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol , 2011, 21(1): 664-671. [5] Wang H, Wang HY. Phytochrome signaling: time to tighten up the loose ends. Mol Plant , 2015, 8(4): 540-551. [6] Xu XS, Paik I, Zhu L, Huq E. Illuminating progress in phytochrome-mediated light signaling pathways. Trends Plant Sci , 2015, 20(10): 641-650. [7] Jenkins GI. The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell , 2014, 26(1): 21-37. [8] Li GL, Zhang H, Xu YQ, Ji RC, Qiu SX, Tang H, Qiu YX. Research progress in plant photoreceptor UVR8. Plant Physiol Commun , 2015, 51(11): 1809-1814. 李国良, 张鸿, 许泳清, 纪荣昌, 邱思鑫, 汤浩, 邱永祥. 植物紫外光受体UVR8的研究进展. 植物生理学报, 2015, 51(11): 1809-1814. [9] Zhuang WJ. Advances in cryptocromes and their signal transduction. Hereditas (Beijing), 2005, 27(2): 325-334. 庄伟建. 隐光敏素及其信号传导研究进展. 遗传, 2005, 27(2): 325-334. [10] Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GTJ, Batschauer A, Ahmad M. The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol , 2011, 62(1): 335-364. [11] Conrad KS, Manahan CC, Crane BR. Photochemistry of flavoprotein light sensors. Nat Chem Biol , 2014, 10(10): 801-809. [12] Christie JM. Phototropin blue-light receptors. Annu Rev Plant Biol , 2007, 58(1): 21-45. [13] Suetsugu N, Wada M. Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: phototropin, ZTL/FKF1/LKP2 and aureochrome. Plant Cell Physiol , 2013, 54(1): 8-23. [14] Zhang K, Cui BX. Optogenetic control of intracellular signaling pathways. Trends Biotechnol , 2015, 33(2): 92-100. [15] Bouton S, Leboeuf E, Mouille G, Leydecker MT, Talbotec J, Granier F, Lahaye M, Höfte H, Truong HN. QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis . Plant Cell , 2002, 14(10): 2577-2590. [16] Orfila C, Sørensen SO, Harholt J, Geshi N, Crombie H, Truong HN, Reid JSG, Knox JP, Scheller HV. QUASIMODO1 is expressed in vascular tissue of Arabidopsis thaliana inflorescence stems, and affects homogalacturonan and xylan biosynthesis. Planta , 2005, 222(4): 613-622. [17] Ahmad M, Cashmore AR. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature , 1993, 366(6451): 162-166. [18] Sun XD, Kang XJ, Ni M. Hypersensitive to red and blue 1 and its modification by protein phosphatase 7 are implicated in the control of Arabidopsis stomatal aperture. PLoS Genet , 2012, 8(5): e1002674. [19] Liu HT, Liu B, Zhao CX, Pepper M, Lin CT. The action mechanisms of plant cryptochromes. Trends Plant Sci , 2011, 16(12): 684-691. [20] Gao J, Wang X, Zhang M, Bian MD, Deng WX, Zuo ZC, Yang ZM, Zhong DP, Lin CT. Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1. Proc Natl Acad Sci USA , 2015, 112(29): 9135-9140. [21] Schepens I, Duek P, Fankhauser C. Phytochrome-mediated light signalling in Arabidopsis . Curr Opin Plant Biol , 2004, 7(5): 564-569. [22] Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol , 2008, 59(1): 281-311. [23] Sadanandom A, Ádám É, Orosa B, Viczián A, Klose C, Zhang CJ, Josse EM, Kozma-Bognár L, Nagy F. SUMOylation of phytochrome-B negatively regulates light-induced signaling in Arabidopsis thaliana . Proc N |