[1] | Broadley M, Brown P, Cakmak I, Rengel Z, Zhao FJ. Function of nutrients: micronutrients. Marschner’s Mineral Nutrition of Higher Plants. In: Marschner P, 3nd ed. San Diego: Academic Press, 2011: 191-248. | [2] | Swamy BPM, Rahman MA, Inabangan-Asilo MA, Amparado A, Manito C, Chadha-Mohanty P, Reinke R, Slamet- Loedin IH. Advances in breeding for high grain Zinc in rice. Rice, 2016, 9: 49. | [3] | Palmgren MG, Clemens S, Williams LE, Kr?mer U, Borg S, Schj?rring JK, Sanders D. Zinc biofortification of cereals: problems and solutions. Trends Plant Sci, 2008, 13(9): 464-473. | [4] | Pinson SRM, Tarpley L, Yan WG, Yeater K, Lahner B, Yakubova E, Huang XY, Zhang M, Guerinot MY, Salt DE. Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Sci, 2015, 55(1): 294-311. | [5] | Sadeghzadeh B. A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr, 2013, 13(4): 905-927. | [6] | Fu LC , Wang RM , Meng J , Wan JL. Effect of foliar application of zinc and iron fertilizers on distribution of zinc and iron, quality and yield of rice grain. Sci Agric Sin, 2010, 43( 24): 5009- 5018. | [6] | 付力成, 王人民, 孟杰, 万吉丽. 叶面锌、铁配施对水稻产量、品质及锌铁分布的影响及其品种差异. 中国农业科学, 2010, 43( 24): 5009- 5018. | [7] | White PJ, Broadley MR. Biofortifying crops with essential mineral elements. Trends Plant Sci, 2005, 10(12): 586-593. | [8] | Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Tansley review: zinc in plants. New Phytol, 2007, 173(4): 677-702. | [9] | Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001, 212(4): 475-486. | [10] | Grotz N, Guerinot ML. Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta (BBA)- Mol Cell Res, 2006, 1763(7): 595-608. | [11] | Hall JL, Williams LE. Transition metal transporters in plants. J Exp Bot, 2003, 54(393): 2601-2613. | [12] | Chanroj S, Wang GY, Venema K, Zhang MW, Delwiche CF, Sze H. Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants. Front Plant Sci, 2012, 3: 25. | [13] | Gustin JL, Zanis MJ, Salt DE. Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evol Biol, 2011, 11: 76. | [14] | Nevo Y, Nelson N. The NRAMP family of metal-ion transporters. Biochim Biophys Acta (BBA)-Mol Cell Res, 2006, 1763(7): 609-620. | [15] | M?ser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol, 2001, 126(4): 1646-1667. | [16] | P?hlsson A M B. Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Poll, 1989, 47(3-4): 287-319. | [17] | Nishida S, Aisu A, Mizuno T. Induction ofIRT1 by the nickel-induced iron-deficient response in Arabidopsis. Plant Signal Behav, 2012, 7(3): 329-331. | [18] | Guerinot ML. The ZIP family of metal transporters. Biochim Biophys Acta (BBA)-Mol Cell Res, 2000, 1465(1-2): 190-198. | [19] | Chen WR, Feng Y, Chao YE. Genomic analysis and expression pattern ofOsZIP1, OsZIP3, and OsZIP4 in two rice( Oryza sativa L.) genotypes with different zinc efficiency. Russ J Plant Physl, 2008, 55(3): 400-409. | [20] | Tiong JW, McDonald GK, Genc Y, Pedas P, Hayes JE, Toubia J, Langridge P, Huang CY. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytol, 2014, 201(1): 131-143. | [21] | Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Rice plants take up iron as an Fe 3+-phytosiderophore and as Fe 2+. Plant J, 2006, 45(3): 335-346. | [22] | Chen WR. Studies on the mechanism of high Zn efficiency in rice (Oryza sativa L.)[D]. Hangzhou: Zhejiang University, 2008. | [22] | 陈文荣. 水稻( Oryza sativa L.)锌高效营养生理机制研究[学位论文]. 杭州: 浙江大学, 2008. | [23] | Pu Q , Li SZ , Li P. Research progress of ZIP transporters gene family. Biotechnol Bull, 2012, ( 10): 15- 19. | [23] | 蒲琦, 李素珍, 李盼. 植物锌铁转运蛋白ZIP基因家族的研究进展. 生物技术通报, 2012, ( 10): 15- 19. | [24] | Kavitha PG, Kuruvilla S, Mathew MK. Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiol Bioch, 2015, 97: 165-174. | [25] | Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. OsZIP4, a novel zinc- regulated zinc transporter in rice. J Exp Bot, 2006, 56(422): 3207-3214. | [26] | Ramesh SA, Shin R, Eide DJ, Schachtman DP. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol, 2003, 133(1): 126-134. | [27] | Yang X, Huang J, Jiang Y, Zhang HS. Cloning and functional identification of two members of the ZIP( Zrt, Irt- like protein) gene family in rice(Oryza sativa L.) Mol Biol Rep 2009, 36(2): 281-287. | [28] | Sasaki A, Yamaji N, Mitani-Ueno N, Kashino M, Ma JF. A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice. Plant J, 2015, 84(2): 374-384. | [29] | Lee S, Kim SA, Lee J, Guerinot ML, An G. Zinc Deficiency-inducibleOsZIP8 encodes a plasma membrane- localized zinc transporter in rice. Mol Cells, 2010, 29(6): 551-558. | [30] | Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Overexpression of theOsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot, 2007, 58(11): 2909-2915. | [31] | Lee S, Jeong HJ, Kim SA, Kim SA, Lee J, Guerinot ML, An G. OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol, 2010, 73(4-5): 507-517. | [32] | Ishimaru Y, Kim S, Tsukamoto T, Oki H, Kobayashi T, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc Natl Acad Sci USA, 2007, 104(18): 7373-7378. | [33] | Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe 2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr, 2006, 52(4): 464-469. | [34] | Lee S, An G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ, 2009, 32(4): 408-416. | [35] | Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S. Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol, 2008, 148(1): 455-466. | [36] | Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol, 1999, 40(1): 37-44. | [37] | Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell, 2002, 14(6): 1223-1233. | [38] | Connolly EL, Fett JP, Guerinot ML. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell, 2002, 14(6): 1347-1357. | [39] | Milner MJ, Seamon J, Craft E, Kochian LV. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot, 2013, 64(1): 369-381. | [40] | López-Millán AF, Ellis DR, Grusak MA. Identification and characterization of several new members of theZIP family of metal ion transporters in medicago truncatula. Plant Mol Biol, 2004, 54(4): 583-596. | [41] | Pedas P, Schjoerring JK, Husted S. Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiol Biochem, 2009, 47(5): 377-383. | [42] | Yamaji N, Ma JF. The node, a hub for mineral nutrient distribution in graminaceous plants. Trends Plant Sci, 2014, 19(9): 556-563. | [43] | Obata H, Kitagishi K. Behavior of zinc in rice. I. Longitudinal distribution pattern of zinc and manganese in the leaf with special reference to aging. J Sci Soil Manure, 1980: 285-291. | [44] | Obata H, Oosawa J, Kitagishi K. Behavior of zinc in rice plants. II. Time course of Zn or Mn accumulation within individual leaves. J Sci Soil Manure, 1980: 292-296. | [45] | Obata H, Kitagishi K. Behavior of zinc in rice plants. III. Investigation on pathway of Zn in vegetative node of rice plants by autoradiography. J Sci Soil Manure, 1980: 297-301. | [46] | Hoshikawa BK. The Growing Rice Plant: An Anatomical Monograph. Tokyo, Japan: Nobunkyo, 1989. | [47] | Kawahara H, Chonan N, Matsuda T. Studies on morphogenesis in rice plants: 8. The morphology of vascular bundles in the dwarf part of stem. Proc Crop Sci Soc Jpn, 1975, 44(1): 61-67. | [48] | Kitagishi K, Obata H. Effects of zinc deficiency on the nitrogen metabolism of meristematic tissues of rice plants with reference to protein synthesis. Soil Sci Plant Nutr, 1986, 32(3): 397-405. | [49] | Yamaguchi N, Ishikawa S, Abe T, Baba K, Arao T, Terada Y. Role of the node in controlling traffic of cadmium, zinc, and manganese in rice. J Exp Bot, 2012, 63(7): 2729-2737. | [50] | Moore KL, Chen Y, van de Meene A, Hughes L, Liu WJ, Geraki T, Mosselmans F, McGrath SP, Grovenor C, Zhao FJ. Combined NanoSIMS and synchrotron X-ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues. New Phytol, 2014, 201(1): 104-115. | [51] | Yamaji N, Xia JX, Mitani-Ueno N, Yokosho K, Ma JF. Preferential delivery of zinc to developing tissues in rice is mediated by p-type heavy metal ATPase OsHMA2. Plant Physiol, 2013, 162(2): 927-939. | [52] | Zhang FS, R?mheld V, Marschner H. Effect of zinc deficiency in wheat on the release of zinc and iron mobilizing root exudates. J Plant Nutr Soil Sci, 1989, 152(2): 205-210. | [53] | Kobayashi T, Yoshihara T, Jiang TB, Goto F, Nakanishi H, Mori S, Nishizawa NK. Combined deficiency of iron and other divalent cations mitigates the symptoms of iron deficiency in tobacco plants. Physiol Plantarum, 2003, 119(3): 400-408. | [54] | Liu CG, Zhou XQ, Chen DG, Li LJ, Li JC, Chen YD. Natural variation of leaf thickness and its association to yield traits in indica rice. J Integr Agric, 2014, 13(2): 316-325. | [55] | Zhang L , He ZH. Understanding natural variations: the source of elite agronomic traits for rice breeding. Chin Sci Bull, 2015, 60( 12): 1066- 1078. | [55] | 张林, 何祖华. 水稻重要农艺性状自然变异研究进展及其应用策略. 科学通报, 2015, 60( 12): 1066- 1078. | [56] | Zhao H, Yao W, Ouyang YD, Yang WN, Wang GW, Lian XM, Xing YH, Chen LL, Xie WB. RiceVarMap: a comprehensive database of rice genomic variations. Nucleic Acids Res, 2014, 43(D1): D1080-D1022. |
|