[1] Collins T, Stone JR, Williams AJ. All in the family: the BTB/POZ, KRAB, and SCAN domains. Mol Cell Biol , 2001, 21(11): 3609-3615. [2] Stubbs L, Sun Y, Caetano-Anolles D. Function and evolution of C 2 H 2 zinc finger arrays. Subcell Biochem , 2011, 52: 75-94. [3] Emerson RO, Thomas JH. Adaptive evolution in zinc finger transcription factors. PLoS Genet , 2009, 5(1): e1000325. [4] Tadepally HD, Burger G, Aubry M. Evolution of C 2 H 2 - zinc finger genes and subfamilies in mammals: species-specific duplication and loss of clusters, genes and effector domains. BMC Evol Biol , 2008, 8: 176. [5] Tian CY, Zhang LQ, He FC. Progress in the study of KRAB zinc finger protein. Hereditas ( Beijing ), 2006, 28(11): 1451-1456. 田春艳, 张令强, 贺福初. KRAB型锌指蛋白(KZNF)的研究进展. 遗传, 2006, 28(11): 1451-1456. [6] Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev , 2002, 16(8): 919-932. [7] Ivanov AV, Peng H, Yurchenko V, Yap KL, Negorev DG, Schultz DC, Psulkowski E, Fredericks WJ, White DE, Maul GG, Sadofsky MJ, Zhou MM, Rauscher FJ. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell , 2007, 28(5): 823-837. [8] Rowe HM, Trono D. Dynamic control of endogenous retroviruses during development. Virology , 2011, 411(2): 273-287. [9] Huntley S, Baggott DM, Hamilton AT, Tran-Gyamfi M, Yang S, Kim J, Gordon L, Branscomb E, Stubbs L. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res , 2006, 16(5): 669-677. [10] Birtle Z, Ponting CP. Meisetz and the birth of the KRAB motif. Bioinformatics , 2006, 22(23): 2841-2845. [11] Kono H, Tamura M, Osada N, Suzuki H, Abe K, Moriwaki K, Ohta K, Shiroishi T. Prdm9 polymorphism unveils mouse evolutionary tracks. DNA Res , 2014, 21(3): 315-326. [12] Liu H, Chang LH, Sun Y, Lu XC, Stubbs L. Deep vertebrate roots for mammalian zinc finger transcription factor subfamilies. Genome Biol Evol , 2014, 6(3): 510-525. [13] Vinogradov AE. Human more complex than mouse at cellular level. PLoS One , 2012, 7(7): e41753. [14] Vogel MJ, Guelen L, de Wit E, Peric-Hupkes D, Lodén M, Talhout W, Feenstra M, Abbas B, Classen AK, van Steensel B. Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res , 2006, 16(12): 1493-1504. [15] Westphal T, Reuter G. Recombinogenic effects of suppressors of position-effect variegation in Drosophila. Genetics , 2002, 160(2): 609-621. [16] Cam HP, Sugiyama T, Chen ES, Chen X, FitzGerald PC, Grewal SIS. Comprehensive analysis of heterochromatin-and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet , 2005, 37(8): 809-819. [17] Vissing H, Meyer WK, Aagaard L, Tommerup N, Thiesen HJ. Repression of transcriptional activity by heterologous KRAB domains present in zinc finger proteins. FEBS Lett , 1995, 369(2-3): 153-157. [18] Lupo A, Cesaro E, Montano G, Zurlo D, Izzo P, Costanzo P. KRAB-zinc finger proteins: a repressor family displaying multiple biological functions. Curr Genomics , 2013, 14(4): 268-278. [19] Urrutia R. KRAB-containing zinc-finger repressor proteins. Genome Biol , 2003, 4(10): 231. [20] Emerson RO, Thomas JH. Gypsy and the birth of the SCAN domain. J Virol , 2011, 85(22): 12043-12052. [21] King M, Wilson A. Evolution at two levels in humans and chimpanzees. Science , 1975, 188(4184): 107-116. [22] Nadimpalli S, Persikov AV, Singh M. Pervasive variation of transcription factor orthologs contributes to regulatory network evolution. PLoS Genet , 2015, 11(3): e1005011. [23] Looman C, Åbrink M, Mark C, Hellman L. KRAB zinc finger proteins: an analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution. Mol Biol Evol , 2002, 19(12): 2118-2130. [24] Jacobs FMJ, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S, Paten B, Salama SR, Haussler D. An evolutionary arms race between KRAB zinc-finger genes ZNF91 / 93 and SVA/L1 retrotransposons. Nature , 2014, 516 (7530): 242-245. [25] Brayer KJ, Segal DJ. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys , 2008, 50(3): 111-131. [26] Hoffmann A, Ciani E, Boeckardt J, Holsboer F, Journot L, Spengler D. Transcriptional activities of the zinc finger protein Zac are differentially controlled by DNA binding. Mol Cell Biol , 2003, 23(3): 988-1003. [27] Siggers T, Reddy J, Barron B, Bulyk ML. Diversification of transcription factor paralogs via noncanonical modularity in C2H2 zinc finger DNA binding. Mol Cell , 2014, 55(4): 640-648. [28] Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet , 2009, 10(10): 691-703. [29] Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA , 2003, 100(9): 5280-5285. [30] Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T, Maillard PV, Layard-Liesching H, Verp S, Marquis J, Spitz F, Constam DB, Trono D. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature , 2010, 463(7278): 237-240. [31] Castro-Diaz N, Ecco G, Coluccio A, Kapopoulou A, Yazdanpanah B, Friedli M, Duc J, Jang SM, Turelli P, Trono D. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev , 2014, 28(13): 1397-1409. [32] Turelli P, Castro-Diaz N, Marzetta F, Kapopoulou A, Raclot C, Duc J, Tieng V, Quenneville S, Trono D. Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res , 2014, 24(8): 1260-1270. [33] Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell , 2007, 131(1): 46-57. [34] Wolf D, Goff SP. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature , 2009, 458(7242): 1201- 1204. [35] Lukic S, Nicolas JC, Levine AJ. The diversity of zinc-finger genes on human chromosome 19 provides an evolutionary mechanism for defense against inherited endogenous retroviruses. Cell Death Differ , 2014, 21(3): 381-387. [36] Imbeault M, Trono D. As time goes by: KRABs evolve to KAP endogenous retroelements. Dev Cell , 2014, 31(3): 257-258. [37] Quenneville S, Turelli P, Bojkowska K, Raclot C, Offner S, Kapopoulou A, Trono D. The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep , 2012, 2(4): 766-773. [38] Rowe HM, Friedli M, Offner S, Verp S, Mesnard D, Marquis J, Aktas T, Trono D. De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/ KAP1 and ESET. Development , 2013, 140(3): 519-529. [39] Orr HA. Dobzhansky, Bateson, and the genetics of speciation. Genetics , 1996, 144(4): 1331-1335. [40] Nowick K, Carneiro M, Faria R. A prominent role of KRAB-ZNF transcription factors in mammalian speciation?. Trends Genet , 2013, 29(3): 130-139. [41] Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature , 2005, 438(7066): 374-378. [42] Mihola O, Trachtulec Z, Vlcek C, Schimenti JC, Forejt J. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science , 2009, 323(5912): 373-375. [43] Ségurel L, Leffler EM, Przeworski M. The case of the fickle fingers: how the PRDM9 zinc finger protein specifies meiotic recombination hotspots in humans. PLoS Biol , 2011, 9(12): e1001211. [44] Persikov AV, Wetzel JL, Rowland EF, Oakes BL, Xu DJ, Singh M, Noyes MB. A systematic survey of the Cys 2 His 2 zinc finger DNA-binding landscape. Nucleic Acids Res , 2015, 43(3): 1965-1984. [45] Wolf G, Greenberg D, Macfarlan TS. Spotting the enemy within: Targeted silencing of foreign DNA in mammalian genomes by the Krüppel-associated box zinc finger protein family. Mob DNA , 2015, 6: 17. [46] Itokawa Y, Yanagawa T, Yamakawa H, Watanabe N, Koga H, Nagase T. KAP1-independent transcriptional repression of SCAN-KRAB-containing zinc finger proteins. Biochem Biophys Res Commun , 2009, 388(4): 689-694. [47] Santoni de Sio FR. Kruppel-associated box (KRAB) proteins in the adaptive immune system. Nucleus , 2014, 5(2): 138-148. [48] Ma ZF, Yang D, He FC, Jiang Y. Review for the regulatory functions of KRAB zinc finger proteins in embryonic development and tumorgenesis of higher vertebrates. Hereditas ( Beijing ), 2010, 32(5): 431-436. 马占福, 杨冬, 贺福初, 姜颖. KRAB型锌指蛋白在高等脊椎动物胚胎发育和肿瘤发生、发展中的调控功能. 遗传, 2010, 32(5): 431-436. [49] Tian CY, Xing GC, Xie P, Lu KF, Nie J, Wang J, Li L, Gao M, Zhang LQ, He FC. KRAB-type zinc-finger protein Apak specifically regulates p53-dependent apoptosis. Nat Cell Biol , 2009, 11(5): 580-591. [50] Yuan L, Tian CY, Wang HY, Song SS, Li DY, Xing GC, Yin YX, He FC, Zhang LQ. Apak competes with p53 for direct binding to intron 1 of p53AIP1 to regulate apoptosis. EMBO Rep , 2012, 13(4): 363-370. [51] Chien HC, Wang HY, Su YN, Lai KY, Lu LC, Chen PC, Tsai SF, Wu CI, Hsieh WS, Shen CKJ. Targeted disruption in mice of a neural stem cell-maintaining, KRAB-Zn finger-encoding gene that has rapidly evolved in the human lineage. PLoS One , 2012, 7(10): e47481. [52] Oliver CH, Khaled WT, Frend H, Nichols J, Watson CJ. The Stat6-regulated KRAB domain zinc finger protein Zfp157 regulates the balance of lineages in mammary glands and compensates for loss of Gata-3. Genes Dev , 2012, 26(10): 1086-1097. [53] Krebs CJ, Larkins LK, Price R, Tullis KM, Miller RD, Robins DM. Regulator of sex - limitation ( Rsl ) encodes a pair of KRAB zinc-finger genes that control sexually dimorphic liver gene expression. Genes Dev , 2003, 17(21): 2664-2674. [54] Bojkowska K, Aloisio F, Cassano M, Kapopoulou A, Santoni de Sio F, Zangger N, Offner S, Cartoni C, Thomas C, Quenneville S, Johnsson K, Trono D. Liver-specific ablation of Krüppel-associated box-associated protein 1 in mice leads to male-predominant hepatosteatosis and development of liver adenoma. Hepatology , 2012, 56(4): 1279-1290. |