[1] Pearson R, Fleetwood J, Eaton S, Crossley M, Bao S. Krüppel-like transcription factors: a functional family. Int J Biochem Cell Biol, 2008, 40(10): 1996–2001.
[2] Dynan WS, Tjian R. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell, 1983, 35(1): 79–87.
[3] Schuh R, Aicher W, Gaul U, Côté S, Preiss A, Maier D, Seifert E, Nauber U, Schröder C, Kemler R, Jäckle H. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a Drosophila segmentation gene. Cell, 1986, 47(6): 1025–1032.
[4] Kaczynski J, Cook T, Urrutia R. Sp1- and Krüppel-like transcription factors. Genome Biol, 2003, 4(2): 206.1–206.8.
[5] Shields JM, Yang VW. Two potent nuclear localization signals in the gut-enriched Krüppel-like factor define a subfamily of closely related Krüppel proteins. J Biol Chem, 1997, 272(29): 18504–18507.
[6] Fujimura N, Vacik T, Machon O, Vlcek C, Scalabrin S, Speth M, Diep D, Krauss S, Kozmik Z. Wnt-mediated down-regulation of Sp1 target genes by a transcriptional repressor Sp5. J Biol Chem, 2007, 282(2): 1225–1237. [7] Basu P, Lung TK, Lemsaddek W, Sargent TG, Williams DC Jr, Basu M, Redmond LC, Lingrel JB, Haar JL, Lloyd JA. EKLF and KLF2 have compensatory roles in embryonic β-globin gene expression and primitive erythropoiesis. Blood, 2007, 110(9): 3417–3425.
[8] McConnell BB, Ghaleb AM, Nandan MO, Yang VW. The diverse functions of Krüppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays, 2007, 29(6): 549–557.
[9] Eaton SA, Funnell AP, Sue N, Nicholas H, Pearson RC, Crossley M. A network of Krüppel-like factors (Klfs). J Biol Chem, 2008, 283(40): 26937–26947.
[10] Das A, Fernandez-Zapico ME, Cao S, Yao J, Fiorucci S, Hebbel RP, Urrutia R, Shah VH. Disruption of an SP2/KLF6 repression complex by SHP is required for farnesoid X receptor-induced endothelial cell migration. J Biol Chem, 2006, 281(51): 39105–39113.
[11] Chen X, Bieker JJ. Stage-specific repression by the EKLF transcriptional activator. Mol Cell Biol, 2004, 24(23): 10416–10424.
[12] Tan NY, Khachigian LM. Sp1 phosphorylation and its regulation of gene transcription. Mol Cell Biol, 2009, 29(10): 2483–2488.
[13] Quadrini KJ, Bieker JJ. EKLF/KLF1 is ubiquitinated in vivo and its stability is regulated by activation domain sequences through the 26S proteasome. FEBS Lett, 2006, 580(9): 2285–2293.
[14] Perdomo J, Verger A, Turner J, Crossley M. Role for SUMO modification in facilitating transcriptional repres-sion by BKLF. Mol Cell Biol, 2005, 25(4): 1549–1559.
[15] Lomberk G, Urrutia R. The family feud: turning off Sp1 by Sp1-like KLF proteins. Biochem J, 2005, 392(Pt 1): 1–11.
[16] Quadrini KJ, Gruzglin E, Bieker JJ. Non-random subcel-lular distribution of variant EKLF in erythroid cells. Exp Cell Res, 2008, 314(7): 1595–1604.
[17] Bouwman P, Philipsen S. Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol, 2002, 195(1–2): 27–38.
[18] Zhao C, Meng A. Sp1-like transcription factors are regu-lators of embryonic development in vertebrates. Dev Growth Differ, 2005, 47(4): 201–211.
[19] Asano H, Li XS, Stamatoyannopoulos G. FKLF-2: a novel Krüppel-like transcriptional factor that activates globin and other erythroid lineage genes. Blood, 2000, 95(11): 3578–3584.
[20] Feng D, Kan YW. The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of β-like globin genes. Proc Natl Acad Sci USA, 2005, 102(28): 9896–9900.
[21] Matsumoto N, Kubo A, Liu H, Akita K, Laub F, Ramirez F, Keller G, Friedman SL. Developmental regulation of yolk sac hematopoiesis by Kruppel-like factor 6. Blood, 2006, 107(4): 1357–1365.
[22] Feinberg MW, Lin Z, Fisch S, Jain MK. An emerging role for Krüppel-like factors in vascular biology. Trends Car-diovasc Med, 2004, 14(6): 241–246.
[23] Feinberg MW, Wara AK, Cao Z, Lebedeva MA, Rosenbauer F, Iwasaki H, Hirai H, Katz JP, Haspel RL, Gray S, Akashi K, Segre J, Kaestner KH, Tenen DG, Jain MK. The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO J, 2007, 26(18): 4138–4148.
[24] Haldar SM, Ibrahim OA, Jain MK. Kruppel-like Factors (KLFs) in muscle biology. J Mol Cell Cardiol, 2007, 43(1): 1–10.
[25] Birsoy K, Chen Z, Friedman J. Transcriptional regulation of adipogenesis by KLF4. Cell Metab, 2008, 7(4): 339–347.
[26] Safe S, Abdelrahim M. Sp transcription factor family and its role in cancer. Eur J Cancer, 2005, 41(16): 2438–2448.
[27] Essafi-Benkhadir K, Grosso S, Puissant A, Robert G, Essafi M, Deckert M, Chamorey E, Dassonville O, Milano G, Auberger P, Pagès G. Dual role of Sp3 transcription factor as an inducer of apoptosis and a marker of tumour aggressiveness. PLoS One, 2009, 4(2): e4478.
[28] Ghaleb AM, Yang VW. The pathobiology of Krüppel-like factors in colorectal cancer. Curr Colorectal Cancer Rep, 2008, 4(2): 59–64.
[29] Wang X, Zhao J. KLF8 transcription factor participates in oncogenic transformation. Oncogene, 2007, 26(3): 456–461.
[30] Tallack MR, Keys JR, Humbert PO, Perkins AC. EKLF/KLF1 controls cell cycle entry via direct regulation of E2f2. J Biol Chem, 2009, 284(31): 20966–20974.
[31] Mottet D, Pirotte S, Lamour V, Hagedorn M, Javerzat S, Bikfalvi A, Bellahcène A, Verdin E, Castronovo V. HDAC4 represses p21WAF1/Cip1 expression in human cancer cells through a Sp1-dependent, p53-independent mechanism. Oncogene, 2009, 28(2): 243–256.
[32] Ghaleb AM, Katz JP, Kaestner KH, Du JX, Yang VW. Krüppel-like factor 4 exhibits antiapoptotic activity following γ-radiation-induced DNA damage. Oncogene, 2007, 26(16): 2365–2373.
[33] Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, Ng HH. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol, 2008, 10(3): 353–360.
[34] Kärner E, Unger C, Cerny R, Ahrlund-Richter L, Ganss B, Dilber MS, Wendel M. Differentiation of human embryonic stem cells into osteogenic or hematopoietic lineages: a dose-dependent effect of osterix over- expression. J Cell Physiol, 2009, 218(2): 323–333. |