[1] | Minch KJ, Rustad TR, Peterson EJR, Winkler J, Reiss DJ, Ma SY, Hickey M, Brabant W, Morrison B, Turkarslan S, Mawhinney C, Galagan JE, Price ND, Baliga NS, Sherman DR . The DNA-binding network of Mycobacterium tuberculosis. Nat Commun, 2015,6:5829. | [2] | WHO. Global tuberculosis report 2017. 2017. | [3] | Sosa ADJ, Byarugaba DK, Amábile-Cuevas CF, Hsueh PR, Kariuki S, Okeke IN . Antimicrobial Resistance in Developing Countries. New York: Springer, 2010. | [4] | Cole ST, Eisenach KD, McMurray DN, Jacobs WR, Jr. Tuberculosis and the Tubercle Bacillus. Washington,DC: ASM Press, 2005. | [5] | Wax RG, Lewis K, Salyers AA, Taber H. Bacterial Resistance to Antimicrobials. 2nd ed. Boca Raton: CRC Press, 2008. | [6] | Alvarez-Jiménez VD, Leyva-Paredes K, García-Martínez M, Vázquez-Flores L, García-Paredes VG, Campillo- Navarro M, Romo-Cruz I, Rosales-García VH, Castañeda-Casimiro J, González-Pozos S, Hernández JM, Wong-Baeza C, García-Pérez BE, Ortiz-Navarrete V, Estrada-Parra S, Serafin-López J, Wong-Baeza I, Chacón-Salinas R, Estrada-García I . Extracellular vesicles released from Mycobacterium tuberculosis- infected neutrophils promote macrophage autophagy and decrease intracellular mycobacterial survival.Front Immunol, 2018,9:272. | [7] | Da Costa AC, De Resende DP, de P. O. Santos B, Zoccal KF, Faccioli LH, Kipnis A, Junqueira-Kipnis AP. Modulation of macrophage responses by CMX, a fusion protein composed of Ag85c, MPT51, and HspX from Mycobacterium tuberculosis. Front Microbiol, 2017,8:623. | [8] | Agnihotri J, Singh S, Wais M, Pathak A . Macrophage targeted cellular carriers for effective delivery of anti- tubercular drugs. Recent Pat Antiinfect Drug Discov, 2017,12(2):162-183. | [9] | Cambier CJ, Falkow S, Ramakrishnan L . Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell, 2014,159(7):1497-1509. | [10] | Wang C, Cui YH, Qu XJ . Mechanisms and improvement of acid resistance in lactic acid bacteria. Arch Microbiol, 2018,200(2):195-201. | [11] | Lund P, Tramonti A, De Biase D . Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev, 2014,38(6):1091-1125. | [12] | Guo XL, Liu HG . Study on the Effect of Toll-like Receptors in mediation of immune responses in Mycobacterium tuberculosis infection. Medical Recapitulate, 2015,21(12):2142-2145. | [12] | 郭雪玲, 刘辉国 . Toll样受体在介导结核分枝杆菌感染免疫反应中的作用. 医学综述, 2015,21(12):2142-2145. | [13] | Nkwouano V, Witkowski S, Rehberg N, Kalscheuer R, Nausch N, Mayatepe |
[1] |
蒋卓远, 查艳, 石小峰, 张永彪. 神经嵴细胞和神经嵴病及其致病机制的研究进展[J]. 遗传, 2022, 44(2): 117-133. |
[2] |
毛轲, 孟子秋, 张永彪. 神经嵴发育调控及颅面部遗传基础研究进展[J]. 遗传, 2022, 44(12): 1089-1102. |
[3] |
李帆, 余蓉培, 孙丹, 王继华, 李绅崇, 阮继伟, 单芹丽, 陆平利, 汪国鲜. 抑制植物减数分裂重组的分子机理[J]. 遗传, 2019, 41(1): 52-65. |
[4] |
刘洋, 王邦兴, 刘志永, 韩轶, 谭耀驹, 李昕洁, 刘健雄, 谭守勇, 张天宇. 非一线抗结核药物耐药机制及耐药性诊断研究进展[J]. 遗传, 2016, 38(10): 928-939. |
[5] |
张玉娇, 李晓静, 米凯霞. 结核分枝杆菌耐氟喹诺酮类药物的分子机制研究进展[J]. 遗传, 2016, 38(10): 918-927. |
[6] |
王婷, 焦伟伟, 申阿东. 结核分枝杆菌乙胺丁醇耐药机制的研究进展[J]. 遗传, 2016, 38(10): 910-917. |
[7] |
崔鹏, 许涛, 张文宏, 张颖. 细菌持留与抗生素表型耐药机制[J]. 遗传, 2016, 38(10): 859-871. |
[8] |
余莉莉,董琬如,陈明会,孔祥阳. 性腺母细胞瘤的分子遗传机制研究进展[J]. 遗传, 2015, 37(11): 1105-1115. |
[9] |
汤晓丽 邓立彬 林加日 张伟龙 刘双梅 魏懿 梅普明 汪雁 梁尚栋. 固醇调节元件结合蛋白1及其靶基因网络[J]. 遗传, 2013, 35(5): 607-615. |
[10] |
陈志强 韩新焕 魏钦俊 邢光前 曹新. 小鼠内耳发育核心转录因子的保守性及调控网络的比较分析[J]. 遗传, 2013, 35(10): 1198-1208. |
[11] |
谢崇波,金谷雷,徐海明,朱军. 拟南芥在盐胁迫环境下SOS转录调控网络的构建及分析[J]. 遗传, 2010, 32(6): 639-646. |
[12] |
王正华,刘齐军,朱云平. 基因调控网络的模块化组织研究[J]. 遗传, 2008, 30(1): 20-27. |
[13] |
刘万霖,李栋,朱云平,贺福初. 基于微阵列数据构建基因调控网络[J]. 遗传, 2007, 29(12): 1434-1434―1442. |
|