遗传 ›› 2023, Vol. 45 ›› Issue (6): 501-513.doi: 10.16288/j.yczz.23-021

• 综述 • 上一篇    下一篇

植物质体基因工程调控元件研究进展

于一凡1,2(), 欧阳臻2, 郭娟1, 赵瑜君1(), 黄璐琦1,2()   

  1. 1.中国中医科学院中药资源中心,科技部与国家中医药管理局道地药材国家重点实验室,北京 100700
    2.江苏大学食品与生物工程学院,镇江 212013
  • 收稿日期:2023-01-30 修回日期:2023-04-29 出版日期:2023-06-20 发布日期:2023-05-22
  • 通讯作者: 赵瑜君,黄璐琦 E-mail:18641603721@163.com;zhaoyj@nrc.ac.cn;huangluqi01@126.com
  • 作者简介:于一凡,在读博士研究生,专业方向:分子生药学。E-mail: 18641603721@163.com
  • 基金资助:
    中央本级重大增减支项目“名贵中药资源可持续利用能力建设”(2060302);中央级公益性科研院所基本科研业务费专项资金(ZZ15-YQ-061);中央级公益性科研院所基本科研业务费专项资金(ZZXT202103)

Progress on regulatory elements of plant plastid genetic engineering

Yifan Yu1,2(), Zhen OuYang2, Juan Guo1, Yujun Zhao1(), Luqi Huang1,2()   

  1. 1. State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
    2. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
  • Received:2023-01-30 Revised:2023-04-29 Online:2023-06-20 Published:2023-05-22
  • Contact: Zhao Yujun,Huang Luqi E-mail:18641603721@163.com;zhaoyj@nrc.ac.cn;huangluqi01@126.com
  • Supported by:
    Key Project at Central Government Level(2060302);Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ15-YQ-061);Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZXT202103)

摘要:

随着植物合成生物学的发展,质体逐渐成为许多具有商业价值的次生代谢产物和治疗性蛋白异源生产的理想平台。与核基因工程相比,质体基因工程在外源基因高效表达和生物安全性等方面具有其独特优势。然而,外源基因在质体系统中的组成型表达或对植物生长不利,因此需进一步挖掘、设计调控元件实现对外源基因的精准调控。本文概述了质体基因工程调控元件的研究进展,内容包括操纵子设计与优化思路、多基因共表达调控策略及新型表达调控元件的挖掘等,为植物合成生物学的发展提供参考。

关键词: 植物合成生物学, 质体基因工程, 遗传转化, 操纵子, 调控元件

Abstract:

With the advancement of plant synthetic biology, plastids have emerged as an optimal platform for the heterologous production of numerous commercially valuable secondary metabolites and therapeutic proteins. In comparison on nuclear genetic engineering, plastid genetic engineering offers unique advantages in terms of efficient expression of foreign genes and biological safety. However, the constitutive expression of foreign genes in the plastid system may impede plant growth. Therefore, it is imperative to further elucidate and design regulatory elements that can achieve precise regulation of foreign genes. In this review, we summarize the progress made in developing regulatory elements for plastid genetic engineering, including operon design and optimization, multi-gene coexpression regulation strategies, and identification of new expression regulatory elements. These findings provide valuable insights for future research.

Key words: plant synthetic biology, plastid genetic engineering, genetic transformation, operon, regulatory element