遗传 ›› 2015, Vol. 37 ›› Issue (10): 992-291.doi: 10.16288/j.yczz.15-291
李金环, 寿佳, 吴强
收稿日期:
2015-06-23
出版日期:
2015-10-20
发布日期:
2015-10-20
通讯作者:
吴强,博士,教授,博士生导师,研究方向:基因表达调控及神经发育。E-mail: qwu123@gmail.com
作者简介:
李金环,博士研究生,专业方向:遗传学。 E-mail: lijinhuan163@126.com。寿佳,博士研究生,专业方向:遗传学。 E-mail: shoujia1106@163.com。李金环和寿佳同为第一作者
基金资助:
Jinhuan Li, Jia Shou, Qiang Wu
Received:
2015-06-23
Online:
2015-10-20
Published:
2015-10-20
摘要: 源于细菌和古菌的Ⅱ型成簇规律间隔短回文重复系统[Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9),CRISPR/Cas9]近年被改造成为基因组定点编辑的新技术。由于它具有设计简单、操作方便、费用低廉等巨大优势,给遗传操作领域带来了一场革命性的改变。本文重点介绍了CRISPR/Cas9系统在基因组DNA片段靶向编辑方面的研究和应用,主要包括DNA片段的删除、反转、重复、插入和易位,这一有效的DNA片段编辑方法为研究基因功能、调控元件、组织发育和疾病发生发展提供了有力手段。本文最后展望了Ⅱ型CRISPR/Cas9系统的应用前景和其他类型CRISPR系统的应用潜力,为开展利用基因组DNA片段靶向编辑进行基因调控和功能研究提供参考。
李金环, 寿佳, 吴强. CRISPR/Cas9系统在基因组DNA片段编辑中的应用[J]. 遗传, 2015, 37(10): 992-291.
Jinhuan Li, Jia Shou, Qiang Wu. DNA fragment editing of genomes by CRISPR/Cas9[J]. HEREDITAS(Beijing), 2015, 37(10): 992-291.
[1] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ. Initial sequencing and analysis of the human genome . Nature , 2001, 409(6822): 860-921. [2] Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng ZM, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan WN, Ge WM, Gong FC, Gu ZP, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke ZX, Ketchum KA, Lai ZW, Lei YD, Li ZY, Li JY, Liang Y, Lin XY, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun JT, Wang ZY, Wang AH, Wang X, Wang J, Wei MH, Wides R, Xiao CL, Yan CH, Yao A, Ye J, Zhan M, Zhang WQ, Zhang HY, Zhao Q, Zheng LS, Zhong F, Zhong WY, Zhu SC, Zhao SY, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen MY, Wu D, Wu M, Xia A, Zandieh A, Zhu XH. The sequence of the human genome . Science , 2001, 291(5507): 1304-1351. [3] The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome . Nature , 2012, 489(7414): 57-74. [4] Stamatoyannopoulos JA. What does our genome encode?. Genome Res , 2012, 22(9): 1602-1611. [5] Banerji J, Olson L, Schaffner W. A lymphocyte- specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes . Cell , 1983, 33(3): 729-740. [6] Zhang T, Haws P, Wu Q. Multiple variable first exons: a mechanism for cell- and tissue-specific gene regulation . Genome Res , 2004, 14(1): 79-89. [7] Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E, Vernot B, Thurman RE, John S, Sandstrom R, Johnson AK, Maurano MT, Humbert R, Rynes E, Wang H, Vong S, Lee K, Bates D, Diegel M, Roach V, Dunn D, Neri J, Schafer A, Hansen RS, Kutyavin T, Giste E, Weaver M, Canfield T, Sabo P, Zhang M, Balasundaram G, Byron R, MacCoss MJ, Akey JM, Bender MA, Groudine M, Kaul R, Stamatoyannopoulos JA. An expansive human regulatory lexicon encoded in transcription factor footprints . Nature , 2012, 489(7414): 83-90. [8] Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV, Ren B. A map of the cis -regulatory sequences in the mouse genome . Nature , 2012, 488(7409): 116-120. [9] Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song LY, Vong S, Weaver M, Yan YQ, Zhang ZC, Zhang ZZ, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA. The accessible chromatin landscape of the human genome . Nature , 2012, 489(7414): 75-82. [10] de Laat W, Duboule D. Topology of mammalian developmental enhancers and their regulatory landscapes . Nature , 2013, 502(7472): 499-506. [11] Wu Q, Maniatis T. A striking organization of a large family of human neural cadherin-like cell adhesion genes . Cell , 1999, 97(6): 779-790. [12] Wu Q. Comparative genomics and diversifying selection of the clustered vertebrate protocadherin genes . Genetics , 2005, 169(4): 2179-2188. [13] Li C, Wu Q. Adaptive evolution of multiple-variable exons and structural diversity of drug-metabolizing enzymes . BMC Evol Biol , 2007, 7: 69. [14] Sharp AJ, Cheng Z, Eichler EE. Structural variation of the human genome . Annu Rev Genomics Hum Genet , 2006, 7: 407-442. [15] Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease . Annu Rev Med , 2010, 61: 437-455. [16] Feuk L. Inversion variants in the human genome: role in disease and genome architecture . Genome Med , 2010, 2(2): 11. [17] Lupski JR. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits . Trends Genet , 1998, 14(10): 417-422. [18] Lupski JR, Stankiewicz P. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes . PLoS Genet , 2005, 1(6): e49. [19] Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer . Nature , 2007, 448(7153): 561-566. [20] Stephens PJ, Greenman CD, Fu BY, Yang FT, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, McLaren S, Lin ML, McBride DJ, Varela I, Nik-Zainal S, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Quail MA, Burton J, Swerdlow H, Carter NP, Morsberger LA, Iacobuzio-Donahue C, Follows GA, Green AR, Flanagan AM, Stratton MR, Futreal PA, Campbell PJ. Massive genomic rearrangement acquired in a single catastrophic event during cancer development . Cell , 2011, 144(1): 27-40. [21] Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, Park K, Kitabayashi N, MacDonald TY, Ghandi M, Van Allen E, Kryukov GV, Sboner A, Theurillat JP, Soong TD, Nickerson E, Auclair D, Tewari A, Beltran H, Onofrio RC, Boysen G, Guiducci C, Barbieri CE, Cibulskis K, Sivachenko A, Carter SL, Saksena G, Voet D, Ramos AH, Winckler W, Cipicchio M, Ardlie K, Kantoff PW, Berger MF, Gabriel SB, Golub TR, Meyerson M, Lander ES, Elemento O, Getz G, Demichelis F, Rubin MA, Garraway LA. Punctuated evolution of prostate cancer genomes . Cell , 2013, 153(3): 666-677. [22] Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination . Nature , 1985, 317(6034): 230-234. [23] Thomas KR, Capecchi MR. Introduction of homologous DNA sequences into mammalian cells induces mutations in the cognate gene . Nature , 1986, 324(6092): 34-38. [24] Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century . Nat Rev Genet , 2005, 6(6): 507-512. [25] Zheng BH, Sage M, Sheppeard EA, Jurecic V, Bradley A. Engineering mouse chromosomes with Cre-loxP : range, efficiency, and somatic applications . Mol Cell Biol , 2000, 20(2): 648-655. [26] Spitz F, Herkenne C, Morris MA, Duboule D. Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes . Nat Genet , 2005, 37(8): 889-893. [27] Wu S, Ying GX, Wu Q, Capecchi MR. Toward simpler and faster genome-wide mutagenesis in mice . Nat Genet , 2007, 39(7): 922-930. [28] Gupta A, Hall VL, Kok FO, Shin M, McNulty JC, Lawson ND, Wolfe SA. Targeted chromosomal deletions and inversions in zebrafish . Genome Res , 2013, 23(6): 1008-1017. [29] Xiao A, Wang ZX, Hu YY, Wu YD, Luo Z, Yang ZP, Zu Y, Li WY, Huang P, Tong XJ, Zhu ZY, Lin S, Zhang B. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish . Nucleic Acids Res , 2013, 41(14): e141. [30] Carroll D. Genome engineering with targetable nucleases . Annu Rev Biochem , 2014, 83: 409-439. [31] Yu YJ, Bradley A. Engineering chromosomal rearrangements in mice . Nat Rev Genet , 2001, 2(10): 780-790. [32] Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV. Evolution and classification of the CRISPR-Cas systems . Nat Rev Microbiol , 2011, 9(6): 467-477. [33] Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system . Microbiology , 2009, 155(Pt 3): 733-740. [34] Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA . Nature , 2010, 468(7320): 67-71. [35] Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans -encoded small RNA and host factor RNase III . Nature , 2011, 471(7340): 602-607. [36] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity . Science , 2012, 337(6096): 816-821. [37] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems . Science , 2013, 339(6121): 819-823. [38] Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9 . Science , 2013, 339(6121): 823-826. [39] Li JH, Shou J, Guo Y, Tang YX, Wu YH, Jia ZL, Zhai YA, Chen ZF, Xu Q, Wu Q. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9 . J Mol Cell Biol , 2015, 7(4): 284-298. [40] Jinek M, East A, Cheng A, Lin S, Ma EB, Doudna J. RNA-programmed genome editing in human cells . eLife , 2013, 2: e00471. [41] Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease . Nat Biotechnol , 2013, 31(3): 230-232. [42] Wang HY, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering . Cell , 2013, 153(4): 910-918. [43] Gilbert LA, Larson MH, Morsut L, Liu ZR, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes . Cell , 2013, 154(2): 442-451. [44] Li DL, Qiu ZW, Shao YJ, Chen YT, Guan YT, Liu MZ, Li YM, Gao N, Wang LR, Lu XL, Zhao YX, Liu MY. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system . Nat Biotechnol , 2013, 31(8): 681-683. [45] Malina A, Mills JR, Cencic R, Yan YF, Fraser J, Schippers LM, Paquet M, Dostie J, Pelletier J. Repurposing CRISPR/Cas9 for in situ functional assays . Genes Dev , 2013, 27(23): 2602-2614. [46] Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression . Cell , 2013, 152(5): 1173-1183. [47] Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity . Cell , 2013, 154(6): 1380-1389. [48] Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system . Science , 2014, 343(6166): 80-84. [49] Wei CX, Liu JY, Yu ZS, Zhang B, Gao GJ, Jiao RJ. TALEN or Cas9-rapid, efficient and specific choices for genome modifications . J Genet Genomics , 2013, 40(6): 281-289. [50] Cai M, Yang Y. Targeted genome editing tools for disease modeling and gene therapy . Curr Gene Ther , 2014, 14(1): 2-9. [51] Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9 . Science , 2014, 346(6213): 1258096. [52] González F, Zhu Z, Shi ZD, Lelli K, Verma N, Li QV, Huangfu D. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells . Cell Stem Cell , 2014, 15(2): 215-226. [53] Harrison MM, Jenkins BV, O'Connor-Giles KM, Wildonger J. A CRISPR view of development . Genes Dev , 2014, 28(17): 1859-1872. [54] Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering . Cell , 2014, 157(6): 1262-1278. [55] Kiani S, Beal J, Ebrahimkhani MR, Huh J, Hall RN, Xie Z, Li YQ, Weiss R. CRISPR transcriptional repression devices and layered circuits in mammalian cells . Nat Methods , 2014, 11(7): 723-726. [56] Niu YY, Shen B, Cui YQ, Chen YC, Wang JY, Wang L, Kang Y, Zhao XY, Si W, Li W, Xiang AP, Zhou JK, Guo XJ, Bi Y, Si CY, Hu B, Dong GY, Wang H, Zhou ZM, Li TQ, Tan T, Pu XQ, Wang F, Ji SH, Zhou Q, Huang XX, Ji WZ, Sha JH. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos . Cell , 2014, 156(4): 836-843. [57] Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F. Genome-scale CRISPR-Cas9 knockout screening in human cells . Science , 2014, 343(6166): 84-87. [58] Shen B, Zhang WS, Zhang J, Zhou JK, Wang JY, Chen L, Wang L, Hodgkins A, Iyer V, Huang XX, Skarnes WC. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects . Nat Methods , 2014, 11(4): 399-402. [59] Zhou YX, Zhu SY, Cai CZ, Yuan PF, Li CM, Huang YY, Wei WS. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells . Nature , 2014, 509(7501): 487-491. [60] Wan HF, Feng CJ, Teng F, Yang SH, Hu BY, Niu YY, Xiang AP, Fang WZ, Ji WZ, Li W, Zhao XY, Zhou Q. One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system . Cell Res , 2015, 25(2): 258-261. [61] Wu YX, Zhou H, Fan XY, Zhang Y, Zhang M, Wang YH, Xie ZF, Bai MZ, Yin Q, Liang D, Tang W, Liao JY, Zhou CK, Liu WJ, Zhu P, Guo HS, Pan H, Wu CL, Shi HJ, Wu LG, Tang FC, Li JS. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells . Cell Res , 2015, 25(1): 67-79. [62] Fujii W, Kawasaki K, Sugiura K, Naito K. Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease . Nucleic Acids Res , 2013, 41(20): e187. [63] Canver MC, Bauer DE, Dass A, Yien YY, Chung J, Masuda T, Maeda T, Paw BH, Orkin SH. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells . J Biol Chem , 2014, 289(31): 21312-21324. [64] Kraft K, Geuer S, Will AJ, Chan WL, Paliou C, Borschiwer M, Harabula I, Wittler L, Franke M, Ibrahim DM, Kragesteen BK, Spielmann M, Mundlos S, Lupiáñez DG, Andrey G. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in Mice . Cell Rep , 2015, 10(5): 833-839. [65] Li YX, Park AI, Mou HW, Colpan C, Bizhanova A, Akama-Garren E, Joshi N, Hendrickson EA, Feldser D, Yin H, Anderson DG, Jacks T, Weng ZP, Xue W. A versatile reporter system for CRISPR-mediated chromosomal rearrangements . Genome Biol , 2015, 16: 111. [66] Wang S, Sengel C, Emerson MM, Cepko CL. A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina . Dev Cell , 2014, 30(5): 513-527. [67] Incontro S, Asensio CS, Edwards RH, Nicoll RA. Efficient, complete deletion of synaptic proteins using CRISPR . Neuron , 2014, 83(5): 1051-1057. [68] Straub C, Granger AJ, Saulnier JL, Sabatini BL. CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons . PLoS One , 2014, 9(8): e105584. [69] Ho TT, Zhou NJ, Huang JG, Koirala P, Xu M, Fung R, Wu FT, Mo YY. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines . Nucleic Acids Res , 2015, 43(3): e17. [70] Essletzbichler P, Konopka T, Santoro F, Chen D, Gapp BV, Kralovics R, Brummelkamp TR, Nijman SMB, Bürckstummer T. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line . Genome Res , 2014, 24(12): 2059-2065. [71] Fu YF, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells . Nat Biotechnol , 2013, 31(9): 822-826. [72] Pattanayak V, Lin S, Guilinger JP, Ma EB, Doudna JA, Liu DR. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity . Nat Biotechnol , 2013, 31(9): 839-843. [73] Choi PS, Meyerson M. Targeted genomic rearrangements using CRISPR/Cas technology . Nat Commun , 2014, 5: 3728. [74] Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E, Lowe SW, Ventura A. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system . Nature , 2014, 516(7531): 423-427. [75] Guo Y, Monahan K, Wu HY, Gertz J, Varley KE, Li W, Myers RM, Maniatis T, Wu Q. CTCF/cohesin-mediated DNA looping is required for protocadherin alpha promoter choice . Proc Natl Acad Sci USA , 2012, 109(51): 21081-21086. [76] Guo Y, Xu Q, Canzio D, Shou J, Li JH, Gorkin DU, Jung I, Wu HY, Zhai Y, Tang YX, Lu YC, Wu YH, Jia ZL, Li W, Zhang MQ, Ren B, Krainer AR, Maniatis T, Wu Q. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function . Cell , 2015, 162(4): 900-910. [77] Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R, Santos-Simarro F, Gilbert-Dussardier B, Wittler L, Borschiwer M, Haas SA, Osterwalder M, Franke M, Timmermann B, Hecht J, Spielmann M, Visel A, Mundlos S. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions . Cell , 2015, 161(5): 1012-1025. [78] Byrne SM, Ortiz L, Mali P, Aach J, Church GM. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells . Nucleic Acids Res , 2015, 43(3): e21. [79] Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining . Nat Biotechnol , 2015, 33(5): 538-542. [80] Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kuhn R. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells . Nat Biotechnol , 2015, 33(5): 543-548. [81] Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation . Nat Rev Cancer , 2007, 7(4): 233-245. [82] Mani RS, Chinnaiyan AM. Triggers for genomic rearrangements: insights into genomic, cellular and environmental influences . Nat Rev Genet , 2010, 11(12): 819-829. [83] Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes . J Natl Cancer Inst , 1960, 25: 85-109. [84] Weinstock DM, Elliott B, Jasin M. A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair . Blood , 2006, 107(2): 777-780. [85] Brunet E, Simsek D, Tomishima M, DeKelver R, Choi VM, Gregory P, Urnov F, Weinstock DM, Jasin M. Chromosomal translocations induced at specified loci in human stem cells . Proc Natl Acad Sci USA , 2009, 106(26): 10620-10625. [86] Simsek D, Jasin M. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation . Nat Struct Mol Biol , 2010, 17(4): 410-416. [87] Ghezraoui H, Piganeau M, Renouf B, Renaud JB, Sallmyr A, Ruis B, Oh S, Tomkinson AE, Hendrickson EA, Giovannangeli C, Jasin M, Brunet E. Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining . Mol Cell , 2014, 55(6): 829-842. [88] Lagutina IV, Valentine V, Picchione F, Harwood F, Valentine MB, Villarejo-Balcells B, Carvajal JJ, Grosveld GC. Modeling of the human alveolar rhabdomyosarcoma Pax3-Foxo1 chromosome translocation in mouse myoblasts using CRISPR-Cas9 nuclease . PLoS Genet , 2015, 11(2): e1004951. [89] O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. Programmable RNA recognition and cleavage by CRISPR/Cas9 . Nature , 2014, 516(7530): 263-266. [90] Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence . Nature , 2013, 497(7448): 254-257. [91] Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS. Cas9-mediated targeting of viral RNA in eukaryotic cells . Proc Natl Acad Sci USA , 2015, 112(19): 6164-6169. [92] Tamulaitis G, Kazlauskiene M, Manakova E, Venclovas C, Nwokeoji AO, Dickman MJ, Horvath P, Siksnys V. Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol Cell , 2014, 56(4): 506-517. [93] Staals RHJ, Zhu YF, Taylor DW, Kornfeld JE, Sharma K, Barendregt A, Koehorst JJ, Vlot M, Neupane N, Varossieau K, Sakamoto K, Suzuki T, Dohmae N, Yokoyama S, Schaap PJ, Urlaub H, Heck AJR, Nogales E, Doudna JA, Shinkai A, van der Oost J. RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol Cell , 2014, 56(4): 518-530. [94] Samai P, Pyenson N, Jiang WY, Goldberg GW, Hatoum-Aslan A, Marraffini LA. Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity . Cell , 2015, 161(5): 1164-1174. |
[1] | 郑晓飞,黄海燕,吴强. 染色质架构蛋白CTCF调控UGT1基因簇的表达[J]. 遗传, 2019, 41(6): 509-523. |
[2] | 丁庆倩,王小婷,胡利琴,齐欣,葛林豪,徐伟亚,徐兆师,周永斌,贾冠清,刁现民,闵东红,马有志,陈明. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 遗传, 2018, 40(4): 327-338. |
[3] | 陈一欧, 宝颖, 马华峥, 伊宗裔, 周卓, 魏文胜. 基因编辑技术及其在中国的研究发展[J]. 遗传, 2018, 40(10): 900-915. |
[4] | 汪乐洋,黄海燕,吴强. 利用CRISPR/Cas9对基因组中高度同源DNA片段编辑多样性的遗传学研究[J]. 遗传, 2017, 39(4): 313-325. |
[5] | 张道微, 张超凡, 董芳, 黄艳岚, 张亚, 周虹. CRISPR/Cas9系统在培育抗病毒植物新种质中的应用[J]. 遗传, 2016, 38(9): 811-820. |
[6] | 周想春, 邢永忠. 基因组编辑技术在植物基因功能鉴定及作物育种中的应用[J]. 遗传, 2016, 38(3): 227-242. |
[7] | 周菲, 路史展, 高亮, 张娟娟, 林拥军. 植物质体基因工程:新的优化策略及应用[J]. 遗传, 2015, 37(8): 777-792. |
[8] | 谢胜松,张懿,张利生,李广磊,赵长志,倪攀,赵书红. CRISPR/Cas9系统中sgRNA设计与脱靶效应评估[J]. 遗传, 2015, 37(11): 1125-1136. |
[9] | 璩良, 李华善, 姜运涵, 董春升. CRISPR/Cas9系统的分子机制及其在人类疾病基因治疗中的应用[J]. 遗传, 2015, 37(10): 974-982. |
[10] | 孙博渊, 涂剑波, 李英, 杨明耀. 基因及其顺式调控元件在动物表型进化中的作用[J]. 遗传, 2014, 36(6): 525-535. |
[11] | 张凡,林爱华,林美华,丁元林,饶绍奇. 基于双聚类挖掘癌症共享的基因功能模块[J]. 遗传, 2013, 35(3): 333-342. |
[12] | 高志强,占小登,梁永书,程式华,曹立勇. 水稻粒形性状的遗传及相关基因定位与克隆研究进展[J]. 遗传, 2011, 33(4): 314-321. |
[13] | 王香明,王丹巧,汪晓燕. 帕金森病相关基因功能研究进展[J]. 遗传, 2010, 32(8): 779-784. |
[14] | 张长青,王进,高翔. 拟南芥TCH4基因启动区转录调控元件的计算识别[J]. 遗传, 2008, 30(5): 620-626. |
[15] | 王教瑜,杜新法,柴荣耀,孙国昌,林福呈. 丝状真菌目标基因替换过程中的策略与方法[J]. 遗传, 2007, 29(7): 898-904. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: