遗传 ›› 2024, Vol. 46 ›› Issue (1): 34-45.doi: 10.16288/j.yczz.23-205
阿卜力米提·阿卜杜喀迪尔1(), 张其奥1, 李佩波2, 谢建平1(
)
收稿日期:
2023-09-16
修回日期:
2023-11-18
出版日期:
2024-01-20
发布日期:
2023-11-20
通讯作者:
谢建平
E-mail:1014420935@qq.com;georgex@swu.edu.cn
作者简介:
阿卜力米提·阿卜杜喀迪尔,博士研究生,研究方向:微生物与宿主及环境互作。E-mail: 基金资助:
Abulimiti Abudukadier1(), Qi-ao Zhang1, Peibo Li2, Jianping Xie1(
)
Received:
2023-09-16
Revised:
2023-11-18
Published:
2024-01-20
Online:
2023-11-20
Contact:
Jianping Xie
E-mail:1014420935@qq.com;georgex@swu.edu.cn
Supported by:
摘要:
目前,已知的分枝杆菌属有170多种,是分枝杆菌科中唯一的属。该属的微生物在引起人类疾病的能力方面呈现多样化。分枝杆菌属包括人类病原体(结核分枝杆菌复合菌群和麻风分枝杆菌)和被称为非结核分枝杆菌(non-tuberculosis mycobacteria,NTM)的环境微生物。分枝杆菌的一个常见致病因素是生物被膜的形成。细菌生物被膜通常被定义为表面附着的细菌群落,也被认为是被包裹的微生物细胞的共享空间,包括各种胞外聚合物基质(extracellular polymeric substances,EPS),如多糖、蛋白质、淀粉样蛋白、脂类和胞外DNA (extracellular DNA,EDNA),以及膜小泡和类腐殖质微生物衍生的难降解物质。基质的组装和动力学主要由第二信使、信号分子或小RNA协调。完全破译细菌如何为基质提供结构,从而促进细胞外反应并从中受益,仍然是未来生物被膜研究的挑战。本文介绍了生物被膜五步发育模型和生物被膜形成的新模型,分析了生物被膜的致病性,与噬菌体、宿主免疫细胞的互作,同时解析了分枝杆菌生物被膜关键基因及调控网络,分枝杆菌生物被膜与耐药性,以期为临床上治疗由生物被膜引起的疾病提供基础。
阿卜力米提·阿卜杜喀迪尔, 张其奥, 李佩波, 谢建平. 分枝杆菌生物被膜发育调控与抗生素耐药菌防控新措施研发[J]. 遗传, 2024, 46(1): 34-45.
Abulimiti Abudukadier, Qi-ao Zhang, Peibo Li, Jianping Xie. Regulation of Mycobacterium biofilm development and novel measures against antibiotics resistance[J]. Hereditas(Beijing), 2024, 46(1): 34-45.
[1] |
Forbes BA. Mycobacterial taxonomy. J Clin Microbiol, 2017, 55(2): 380-383.
doi: 10.1128/JCM.01287-16 pmid: 27927928 |
[2] |
Chakraborty P, Bajeli S, Kaushal D, Radotra BD, Kumar A. Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis. Nat Commun, 2021, 12(1): 1606.
doi: 10.1038/s41467-021-21748-6 pmid: 33707445 |
[3] |
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol, 2016, 14(9): 563-575.
doi: 10.1038/nrmicro.2016.94 |
[4] |
Aung TT, Yam JKH, Lin SM, Salleh SM, Givskov M, Liu SP, Lwin NC, Yang L, Beuerman RW. Biofilms of pathogenic nontuberculous Mycobacteria targeted by new therapeutic approaches. Antimicrob Agents Chemother, 2015, 60(1): 24-35.
doi: 10.1128/AAC.01509-15 |
[5] |
Schubert OT, Mouritsen J, Ludwig C, Röst HL, Rosenberger G, Arthur PK, Claassen M, Campbell DS, Sun Z, Farrah T, Gengenbacher M, Maiolica A, Kaufmann SHE, Moritz RL, Aebersold R. The Mtb proteome library: a resource of assays to quantify the complete proteome of Mycobacterium tuberculosis. Cell Host Microbe, 2013, 13(5): 602-612.
doi: S1931-3128(13)00150-9 pmid: 23684311 |
[6] |
Byrd TF, Lyons CR. Preliminary characterization of a Mycobacterium abscessus mutant in human and murine models of infection. Infect Immun, 1999, 67(9): 4700-4707.
pmid: 10456919 |
[7] |
Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol, 1990, 4(11): 1911-1919.
doi: 10.1111/j.1365-2958.1990.tb02040.x pmid: 2082148 |
[8] |
Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev, 2002, 15(2): 167-193.
doi: 10.1128/CMR.15.2.167-193.2002 pmid: 11932229 |
[9] |
Hobley L, Harkins C, Macphee CE, Stanley-Wall NR. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev, 2015, 39(5): 649-669.
doi: 10.1093/femsre/fuv015 pmid: 25907113 |
[10] |
Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the “house of biofilm cells”. J Bacteriol, 2007, 189(22): 7945-7947.
doi: 10.1128/JB.00858-07 |
[11] | Beebout CJ, Eberly AR, Werby SH, Reasoner SA, Brannon JR, De S, Fitzgerald MJ, Huggins MM, Clayton DB, Cegelski L, Hadjifrangiskou M.Respiratory heterogeneity shapes biofilm formation and host colonization in uropathogenic Escherichia coli. mBio, 2019, 10(2): e02400-e02418. |
[12] |
Barnhart MM, Chapman MR. Curli biogenesis and function. Annu Rev Microbiol, 2006, 60: 131-147.
pmid: 16704339 |
[13] |
Shi TY, Fu TW, Xie JP. Polyphosphate deficiency affects the sliding motility and biofilm formation of Mycobacterium smegmatis. Curr Microbiol, 2011, 63(5): 470-476.
doi: 10.1007/s00284-011-0004-4 pmid: 21882007 |
[14] |
Flemming HC, Baveye P, Neu TR, Stoodley P, Szewzyk U, Wingender J, Wuertz S. Who put the film in biofilm? The migration of a term from wastewater engineering to medicine and beyond. NPJ Biofilms Microbiomes, 2021, 7(1): 10.
doi: 10.1038/s41522-020-00183-3 |
[15] |
Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am, 1978, 238(1): 86-95.
doi: 10.1038/scientificamerican0178-86 pmid: 635520 |
[16] |
Mccoy WF, Bryers JD, Robbins J, Costerton JW. Observations of fouling biofilm formation. Can J Microbiol, 1981, 27(9): 910-917.
pmid: 7306879 |
[17] |
Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens, 2013, 2(2): 288-356.
doi: 10.3390/pathogens2020288 pmid: 25437038 |
[18] |
Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, Stewart PS, Bjarnsholt T. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol, 2022, 20(10): 608-620.
doi: 10.1038/s41579-022-00767-0 pmid: 35922483 |
[19] |
Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol, 2002, 184(4): 1140-1154.
doi: 10.1128/jb.184.4.1140-1154.2002 |
[20] | Petrova OE, Sauer K. A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathog, 2009, 5(11): e1000668. |
[21] |
Gupta K, Marques CNH, Petrova OE, Sauer K. Antimicrobial tolerance of Pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two-component hybrid SagS. J Bacteriol, 2013, 195(21): 4975-4987.
doi: 10.1128/JB.00732-13 |
[22] |
Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol, 2008, 6(3): 199-210.
doi: 10.1038/nrmicro1838 pmid: 18264116 |
[23] |
Dar D, Dar N, Cai L, Newman DK. Spatial transcriptomics of planktonic and sessile bacterial populations at single- cell resolution. Science, 2021, 373(6556): eabi4882.
doi: 10.1126/science.abi4882 |
[24] |
Kowalski CH, Morelli KA, Schultz D, Nadell CD, Cramer RA. Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance. Proc Natl Acad Sci USA, 2020, 117(36): 22473-22483.
doi: 10.1073/pnas.2003700117 pmid: 32848055 |
[25] | Kolpen M, Kragh KN, Enciso JB, Faurholt-Jepsen D, Lindegaard B, Egelund GB, Jensen AV, Ravn P, Mathiesen IHM, Gheorge AG, Hertz FB, Qvist T, Whiteley M, Jensen PØ, Bjarnsholt T.Bacterial biofilms predominate in both acute and chronic human lung infections. Thorax, 2022, 77(10): 1015-1022. |
[26] | Bull JJ, Christensen KA, Scott C, Jack BR, Crandall CJ, Krone SM. Phage-bacterial dynamics with spatial structure: self organization around phage sinks can promote increased cell densities. Antibiotics (Basel), 2018, 7(1): 8. |
[27] |
Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun, 2016, 7: 11965.
doi: 10.1038/ncomms11965 pmid: 27311813 |
[28] |
Yan SQ, Xu MM, Duan XK, Yu ZX, Li QM, Xie LX, Fan XY, Xie JP. Mycobacteriophage putative GTPase- activating protein can potentiate antibiotics. Appl Microbiol Biotechnol, 2016, 100(18): 8169-8177.
doi: 10.1007/s00253-016-7681-7 |
[29] |
Vaccari L, Molaei M, Niepa THR, Lee D, Leheny RL, Stebe KJ. Films of bacteria at interfaces. Adv Colloid Interface Sci, 2017, 247: 561-572.
doi: 10.1016/j.cis.2017.07.016 |
[30] |
Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol, 1995, 49: 711-745.
pmid: 8561477 |
[31] |
Peterson BW, He Y, Ren YJ, Zerdoum A, Libera MR, Sharma PK, van Winkelhoff AJ, Neut D, Stoodley P, van der Mei HC, Busscher HJ. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiol Rev, 2015, 39(2): 234-245.
doi: 10.1093/femsre/fuu008 pmid: 25725015 |
[32] |
Vidakovic L, Mikhaleva S, Jeckel H, Nisnevich V, Strenger K, Neuhaus K, Raveendran K, Ben-Moshe NB, Aznaourova M, Nosho K, Drescher A, Schmeck B, Schulte LN, Persat A, Avraham R, Drescher K. Biofilm formation on human immune cells is a multicellular predation strategy of Vibrio cholerae. Cell, 2023, 186(12): 2690-2704.e20.
doi: 10.1016/j.cell.2023.05.008 pmid: 37295405 |
[33] |
Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem, 1995, 64: 29-63.
pmid: 7574484 |
[34] |
Barry CE, Mdluli K. Drug sensitivity and environmental adaptation of mycobacterial cell wall components. Trends Microbiol, 1996, 4(7): 275-281.
doi: 10.1016/0966-842x(96)10031-7 pmid: 8829336 |
[35] |
Hong X, Hopfinger AJ. Construction, molecular modeling, and simulation of Mycobacterium tuberculosis cell walls. Biomacromolecules, 2004, 5(3): 1052-1065.
doi: 10.1021/bm034514c |
[36] |
Primm TP, Lucero CA, Falkinham JO. Health impacts of environmental mycobacteria. Clin Microbiol Rev, 2004, 17(1): 98-106.
doi: 10.1128/CMR.17.1.98-106.2004 pmid: 14726457 |
[37] |
Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y lahari A, Kremer L, Jacobs WR, Hatfull GF. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug- tolerant bacteria. Mol Microbiol, 2008, 69(1): 164-174.
doi: 10.1111/mmi.2008.69.issue-1 |
[38] |
Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR, Hatfull GF.GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in Mycobacteria. Cell, 2005, 123(5): 861-873.
doi: 10.1016/j.cell.2005.09.012 pmid: 16325580 |
[39] |
Vargas D, Hageman S, Gulati M, Nobile CJ, Rawat M. S-nitrosomycothiol reductase and mycothiol are required for survival under aldehyde stress and biofilm formation in Mycobacterium smegmatis. IUBMB Life, 2016, 68(8): 621-628.
doi: 10.1002/iub.1524 pmid: 27321674 |
[40] |
Nguyen KT, Piastro K, Gray TA, Derbyshire KM. Mycobacterial biofilms facilitate horizontal DNA transfer between strains of Mycobacterium smegmatis. J Bacteriol, 2010, 192(19): 5134-5142.
doi: 10.1128/JB.00650-10 pmid: 20675473 |
[41] |
Wang XY, Zhao XK, Wang H, Huang X, Duan XK, Gu YZ, Lambert N, Zhang K, Kou ZH, Xie JP. Mycobacterium tuberculosis toxin Rv2872 is an RNase involved in vancomycin stress response and biofilm development. Appl Microbiol Biotechnol, 2018, 102(16): 7123-7133.
doi: 10.1007/s00253-018-9132-0 |
[42] |
Nakano MM, Yang F, Hardin P, Zuber P. Nitrogen regulation of nasA and the nasB operon, which encode genes required for nitrate assimilation in Bacillus subtilis. J Bacteriol, 1995, 177(3): 573-579.
pmid: 7836289 |
[43] |
Li P, Gu YZ, Li J, Xie LX, Li X, Xie JP. Mycobacterium tuberculosis major facilitator superfamily transporters. J Membr Biol, 2017, 250(6): 573-585.
doi: 10.1007/s00232-017-9982-x |
[44] |
Zhao XK, Duan XK, Dai YD, Zhen JF, Guo JH, Zhang K, Wang XY, Kuang ZM, Wang H, Niu JJ, Fan L, Xie JP. Mycobacterium Von Willebrand factor protein MSMEG_ 3641 is involved in biofilm formation and intracellular survival. Future Microbiol, 2020, 15: 1033-1044.
doi: 10.2217/fmb-2020-0064 |
[45] |
He CL, Li B, Gong Z, Huang S, Liu X, Wang JJ, Xie JP, Shi TY. Polyphosphate kinase1 is involved in formation, the morphology and ultramicrostructure of biofilm of Mycobacterium smegmatis and its survivability in macrophage. Heliyon, 2023, 9(3): e14513.
doi: 10.1016/j.heliyon.2023.e14513 |
[46] |
Ali MK, Zhen G, Nzungize L, Stojkoska A, Duan XK, Li CY, Duan W, Xu JQ, Xie JP. Mycobacterium tuberculosis PE31(Rv3477) attenuates host cell apoptosis and promotes recombinant M. smegmatis intracellular survival via up-regulating GTPase guanylate binding protein-1. Front Cell Infect Microbiol, 2020, 10: 40.
doi: 10.3389/fcimb.2020.00040 |
[47] |
Zhao RX, Song YH, Dai QY, Kang YW, Pan JF, Zhu LF, Zhang L, Wang Y, Shen XH. A starvation-induced regulator, RovM, acts as a switch for planktonic/biofilm state transition in Yersinia pseudotuberculosis. Sci Rep, 2017, 7(1): 639.
doi: 10.1038/s41598-017-00534-9 pmid: 28377623 |
[48] |
Robinson JC, Rostami N, Casement J, Vollmer W, Rickard AH, Jakubovics NS. ArcR modulates biofilm formation in the dental plaque colonizer Streptococcus gordonii. Mol Oral Microbiol, 2018, 33(2): 143-154.
doi: 10.1111/omi.12207 pmid: 29139600 |
[49] |
Lin Chua S, Liu Y, Li YY, Ting HJ, Kohli GS, Cai Z, Suwanchaikasem P, Goh KKK, Ng SP, Tolker-Nielsen T, Yang L, Givskov M. Reduced intracellular c-di-GMP content increases expression of quorum sensing-regulated genes in Pseudomonas aeruginosa. Front Cell Infect Microbiol, 2017, 7: 451.
doi: 10.3389/fcimb.2017.00451 |
[50] | Rinaldo S, Giardina G, Mantoni F, Paone A, Cutruzzolà F. Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and bacterial biofilms. FEMS Microbiol Lett, 2018, 365(6). doi: 10.1093/femsle/fny029. |
[51] |
Valentini M, Filloux A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem, 2016, 291(24): 12547-12555.
doi: 10.1074/jbc.R115.711507 pmid: 27129226 |
[52] |
Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol, 2001, 55: 165-199.
pmid: 11544353 |
[53] |
Murugan K, Selvanayaki K, Al-Sohaibani S. Urinary catheter indwelling clinical pathogen biofilm formation, exopolysaccharide characterization and their growth influencing parameters. Saudi J Biol Sci, 2016, 23(1): 150-159.
doi: 10.1016/j.sjbs.2015.04.016 pmid: 26858552 |
[54] |
Chen JM, German GJ, Alexander DC, Ren HP, Tan T, Liu J. Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. J Bacteriol, 2006, 188(2): 633-641.
pmid: 16385053 |
[55] |
Yang Y, Thomas J, Li YL, Vilchèze C, Derbyshire KM, Jacobs WR, Ojha AK. Defining a temporal order of genetic requirements for development of mycobacterial biofilms. Mol Microbiol, 2017, 105(5): 794-809.
doi: 10.1111/mmi.13734 pmid: 28628249 |
[56] | Stewart GR, Wernisch L, Stabler R, Mangan JA, Hinds J, Laing KG, Young DB, Butcher PD. Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology (Reading), 2002, 148(Pt 10):3129-3138. |
[57] |
Målen H, Pathak S, Søfteland T, de Souza GA, Wiker HG. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. BMC Microbiol, 2010, 10: 132.
doi: 10.1186/1471-2180-10-132 pmid: 20429878 |
[58] | Zhou X, Wang W, Hu T. Determination of total alkaloid in seedling bulbs of Fritillaria thunbergii Miq. Zhongguo Zhong Yao Za Zhi, 1992, 17(5): 270-272, 320. |
[59] |
Fisher MA, Plikaytis BB, Shinnick TM. Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol, 2002, 184(14): 4025-4032.
doi: 10.1128/JB.184.14.4025-4032.2002 pmid: 12081975 |
[60] |
Mattow J, Jungblut PR, Schaible UE, Mollenkopf HJ, Lamer S, Zimny-Arndt U, Hagens K, Müller EC, Kaufmann SH. Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains. Electrophoresis, 2001, 22(14): 2936-2946.
pmid: 11565788 |
[61] | Minato Y, Gohl DM, Thiede JM, Chacón JM, Harcombe WR, Maruyama F, Baughn AD. Genomewide assessment of Mycobacterium tuberculosis conditionally essential metabolic pathways. mSystems, 2019, 4(4): e00070-19. |
[62] |
Tripathi SM, Ramachandran R. Crystal structures of the Mycobacterium tuberculosis secretory antigen alanine dehydrogenase (Rv2780) in apo and ternary complex forms captures "open" and "closed" enzyme conformations. Proteins, 2008, 72(3): 1089-1095.
doi: 10.1002/prot.v72:3 |
[63] |
Mawuenyega KG, Forst CV, Dobos KM, Belisle JT, Chen J, Bradbury EM, Bradbury ARM, Chen X. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Mol Biol Cell, 2005, 16(1): 396-404.
pmid: 15525680 |
[64] |
Hall-Stoodley L, Stoodley P. Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol, 2005, 13(1): 7-10.
pmid: 15639625 |
[65] |
Patiño S, Alamo L, Cimino M, Casart Y, Bartoli F, García MJ, Salazar L. Autofluorescence of mycobacteria as a tool for detection of Mycobacterium tuberculosis. J Clin Microbiol, 2008, 46(10): 3296-3302.
doi: 10.1128/JCM.02183-08 pmid: 18836064 |
[66] |
Qvist T, Eickhardt S, Kragh KN, Andersen CB, Iversen M, Høiby N, Bjarnsholt T. Chronic pulmonary disease with Mycobacterium abscessus complex is a biofilm infection. Eur Respir J, 2015, 46(6): 1823-1826.
doi: 10.1183/13993003.01102-2015 pmid: 26493807 |
[67] |
Hoyle BD, Costerton JW. Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res, 1991, 37: 91-105.
pmid: 1763187 |
[68] |
Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol, 2005, 13(1): 34-40.
doi: 10.1016/j.tim.2004.11.010 pmid: 15639630 |
[69] |
Ciofu O, Rojo-Molinero E, Macià MD, Oliver A. Antibiotic treatment of biofilm infections. APMIS, 2017, 125(4): 304-319.
doi: 10.1111/apm.12673 pmid: 28407419 |
[70] |
Anderson GG, O'toole GA. Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol, 2008, 322: 85-105.
pmid: 18453273 |
[71] |
Kester JC, Fortune SM. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit Rev Biochem Mol Biol, 2014, 49(2): 91-101.
doi: 10.3109/10409238.2013.869543 |
[72] |
Hall-Stoodley L, Stoodley P, Kathju S, Høiby N, Moser C, Costerton JW, Moter A, Bjarnsholt T. Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol, 2012, 65(2): 127-145.
doi: 10.1111/j.1574-695X.2012.00968.x |
[73] |
Greendyke R, Byrd TF. Differential antibiotic susceptibility of Mycobacterium abscessus variants in biofilms and macrophages compared to that of planktonic bacteria. Antimicrob Agents Chemother, 2008, 52(6): 2019-2026.
doi: 10.1128/AAC.00986-07 pmid: 18378709 |
[74] |
Ortíz-Pérez A, Martín-De-Hijas N, Alonso-Rodríguez N, Molina-Manso D, Fernández-Roblas R, Esteban J. Importance of antibiotic penetration in the antimicrobial resistance of biofilm formed by non-pigmented rapidly growing mycobacteria against amikacin, ciprofloxacin and clarithromycin. Enferm Infecc Microbiol Clin, 2011, 29(2): 79-84.
doi: 10.1016/j.eimc.2010.08.016 |
[75] |
Muñoz-Egea MC, García-Pedrazuela M, Mahillo I, Esteban J. Effect of ciprofloxacin in the ultrastructure and development of biofilms formed by rapidly growing mycobacteria. BMC Microbiol, 2015, 15: 18.
doi: 10.1186/s12866-015-0359-y |
[76] |
Ortíz-Pérez A, Martín-De-Hijas N, Alonso-Rodríguez N, Molina-Manso D, Fernández-Roblas R, Esteban J. Importance of antibiotic penetration in the antimicrobial resistance of biofilm formed by non-pigmented rapidly growing mycobacteria against amikacin, ciprofloxacin and clarithromycin. Enferm Infecc Microbiol Clin, 2011, 29(2): 79-84.
doi: 10.1016/j.eimc.2010.08.016 |
[77] |
Esteban J, Martín-De-Hijas NZ, García-Almeida D, Bodas-Sánchez A, Gadea I, Fernández-Roblas R. Prevalence of erm methylase genes in clinical isolates of non-pigmented, rapidly growing mycobacteria. Clin Microbiol Infect, 2009, 15(10): 919-923.
doi: 10.1111/j.1469-0691.2009.02757.x |
[1] | 蒋智勇, 谢建平. 分枝杆菌T7SS (ESX)分泌系统功能研究进展[J]. 遗传, 2023, 45(12): 1100-1113. |
[2] | 向莎莎, 谢建平. 分枝杆菌非典型错配修复及其在抗生素耐药中的研究进展[J]. 遗传, 2023, 45(11): 1018-1027. |
[3] | 张沥元, 黄芙静, 许峻旗, 龚真, 谢建平. 结核分枝杆菌酸抗性基因及其调控网络[J]. 遗传, 2018, 40(7): 546-560. |
[4] | 刘洋, 王邦兴, 刘志永, 韩轶, 谭耀驹, 李昕洁, 刘健雄, 谭守勇, 张天宇. 非一线抗结核药物耐药机制及耐药性诊断研究进展[J]. 遗传, 2016, 38(10): 928-939. |
[5] | 张玉娇, 李晓静, 米凯霞. 结核分枝杆菌耐氟喹诺酮类药物的分子机制研究进展[J]. 遗传, 2016, 38(10): 918-927. |
[6] | 王婷, 焦伟伟, 申阿东. 结核分枝杆菌乙胺丁醇耐药机制的研究进展[J]. 遗传, 2016, 38(10): 910-917. |
[7] | 陈昱帆, 刘诗胤, 梁志彬, 吕明发, 周佳暖, 张炼辉. 群体感应与微生物耐药性[J]. 遗传, 2016, 38(10): 881-893. |
[8] | 樊祥宇, 何颖, 谢建平. 以分枝杆菌噬菌体为例探索生命科学研究型教学[J]. 遗传, 2014, 36(8): 842-846. |
[9] | 杜庆林,樊祥宇,毛金校,谢建平. 分枝杆菌中基因敲除操作工具研究进展[J]. 遗传, 2012, 34(7): 857-862. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: