遗传 ›› 2023, Vol. 45 ›› Issue (12): 1100-1113.doi: 10.16288/j.yczz.23-188
收稿日期:
2023-07-10
修回日期:
2023-09-12
出版日期:
2023-12-20
发布日期:
2023-09-18
通讯作者:
谢建平
E-mail:2287834994@qq.com;georgex@swu.edu.cn
作者简介:
蒋智勇,硕士研究生,专业方向:微生物遗传学与感染免疫。E-mail: 基金资助:
Zhiyong Jiang(), Jianping Xie()
Received:
2023-07-10
Revised:
2023-09-12
Published:
2023-12-20
Online:
2023-09-18
Contact:
Jianping Xie
E-mail:2287834994@qq.com;georgex@swu.edu.cn
Supported by:
摘要:
分枝杆菌感染宿主后能够通过分泌至胞外的效应蛋白去影响宿主的免疫功能,其中ESX (或VII型)系统在效应蛋白分泌方面发挥了重要作用。ESX分泌系统是分枝杆菌和许多放线菌中的蛋白质输出系统,但目前ESX系统如何将底物运输穿过外膜的分子机制以及调控机制尚不清楚。本文对ESX系统的组成、功能、分类以及将底物运输至周质空间的相关研究进展展开了综述,并探讨了ESX系统在抗生素耐药、持留及与宿主-噬菌体相互作用中的功能,以及作为新药物靶标的潜力,以期为结核病新药物和疫苗抗原的发现提供新的见解。
蒋智勇, 谢建平. 分枝杆菌T7SS (ESX)分泌系统功能研究进展[J]. 遗传, 2023, 45(12): 1100-1113.
Zhiyong Jiang, Jianping Xie. Progress on the function of Mycobacterium T7SS (ESX) secretion system[J]. Hereditas(Beijing), 2023, 45(12): 1100-1113.
表1
不同ESX系统的组分"
ESX系统亚型 | 组分 | H37Rv中编号 | 功能预测 | 缺失效应 |
---|---|---|---|---|
ESX-1 | EccA1 | Rv3868 | 调节分枝杆菌枝菌酸的合成速率 | 在原代小鼠巨噬细胞中存活所需 |
EccB1 | Rv3869 | 膜复合体结构蛋白 | 在C57BL/6J小鼠脾脏中生长所需 | |
EccCa | Rv3870 | 膜复合体结构蛋白 | 结核分枝杆菌H37Rv Rv3870突变株的生长和细胞毒性减弱 | |
EccCb | Rv3871 | 膜复合体结构蛋白 | 减弱了结核分枝杆菌H37Rv的毒性 | |
EccD1 | Rv3877 | 膜复合体结构蛋白 | 在C57BL/6J小鼠脾脏中生长所需,减弱了结核分枝杆菌H37Rv的毒性 | |
EccE1 | Rv3882c | 膜复合体结构蛋白 | 在C57BL/6J小鼠脾脏中生长所需,减弱了结核分枝杆菌H37Rv的毒性 | |
MycP1 | Rv3883c | 膜复合体结构蛋白,丝氨酸激酶 | 导致EsxA无法分泌,减弱了在BALB/c小鼠中的毒性 | |
ESX-2 | EccB2 | Rv3895c | 膜复合体结构蛋白 | |
EccC2 | Rv3894c | 膜复合体结构蛋白 | ||
EccD2 | Rv3887c | 膜复合体结构蛋白 | ||
MycP2 | Rv3886c | 膜复合体结构蛋白,丝氨酸激酶 | ||
EccE2 | Rv3885c | 膜复合体结构蛋白 | ||
EccA2 | Rv3884c | AAA+家组蛋白(多种细胞活动相关的ATP酶) | ||
ESX-3 | EccA3 | Rv0282 | AAA+家组蛋白(多种细胞活动相关的ATP酶) | |
EccB3 | Rv0283 | 膜复合体结构蛋白 | 体外无法正常生长 | |
EccC3 | Rv0284 | 膜复合体结构蛋白 | 体外无法正常生长 | |
EccD3 | Rv0290 | 膜复合体结构蛋白 | 体外无法正常生长 | |
MycP3 | Rv0291 | 膜复合体结构蛋白,丝氨酸激酶 | 体外无法正常生长 | |
EccE3 | Rv0292 | 膜复合体结构蛋白 | 体外无法正常生长 | |
ESX-4 | EccB4 | Rv3450c | 膜复合体结构蛋白 | |
MycP4 | Rv3449 | 膜复合体结构蛋白,丝氨酸激酶 | ||
EccD4 | Rv3448 | 膜复合体结构蛋白 | ||
EccC4 | Rv3447c | 膜复合体结构蛋白 | ||
ESX-5 | EccB5 | Rv1782 | 膜复合体结构蛋白 | 体外生长缺陷 |
EccC5 | Rv1783 | 膜复合体结构蛋白 | 体外生长缺陷 | |
EccD5 | Rv1795 | 膜复合体结构蛋白 | 体外生长缺陷 | |
MycP5 | Rv1796 | 膜复合体结构蛋白,丝氨酸激酶 | 体外生长缺陷 | |
EccE5 | Rv1797 | 膜复合体结构蛋白 | 体外生长缺陷 | |
EccA5 | Rv1798 | AAA+家族组蛋白(多种细胞活动相关的ATP酶) | 在胆固醇为单一碳源的培养基上无法生长 |
表2
不同ESX系统的底物"
ESX系统亚型 | 底物 | H37Rv中编号 | 功能预测 | 缺失效应 |
---|---|---|---|---|
ESX-1 | EspG1 | Rv3866 | PE/PPE的分子伴侣 | 影响PE/PPE蛋白的分泌 |
EspH | Rv3867 | Esp底物的分子伴侣 | 在斑马鱼幼体中,敲除EspH显著增加了海分枝杆菌的毒力 | |
EspE | Rv3864 | 与EspF形成异源二聚体,可能与外膜上形成的孔道相关,调控ESX-1系统底物的表达 | 影响海分枝杆菌的溶血活性,在C57BL/6J小鼠脾脏中生长所需 | |
EspF | Rv3865 | 与EspE形成异源二聚体,可能与外膜上形成的孔道相关,调控ESX-1系统底物的表达 | 影响海分枝杆菌的溶血活性,在C57BL/6J小鼠脾脏中生长所需 | |
PE35 | Rv3872 | 与PPE68形成异源二聚体 | 在C57BL/6J小鼠脾脏中生长所需 | |
PPE68 | Rv3873 | 与PE35形成异源二聚体 | 在C57BL/6J小鼠脾脏中生长所需 | |
EsxA | Rv3875 | 与EsxB形成异源二聚体,毒力因子,破裂吞噬体膜 | 细菌生长受阻以及毒性减弱 | |
EsxB | Rv3874 | 与EsxA形成异源二聚体,毒力因子,破裂吞噬体膜 | 细菌生长受阻以及毒性减弱 | |
EspI | Rv3876 | 影响分枝杆菌胞内ATP水平 | 细菌生长受阻以及毒性减弱 | |
EspJ | Rv3878 | 促进细菌在宿主体内的存活 | ||
EspL | Rv3880c | 与EsxA和EspE的分泌相关 | ||
EspK | Rv3879c | EspB的分子伴侣 | ||
EspB | Rv3881c | 被MycP1切割裂解,并且能形成7聚物的疏水圆环插入细胞膜中 | ||
ESX-2 | EspG2 | Rv3889c | PE/PPE的分子伴侣 | |
Rv3888c | Rv3888c | 保守的膜蛋白 | 体外生长缺陷 | |
PE36 | Rv3893c | 与PPE69形成异源二聚体 | ||
PPE69 | Rv3892c | 与PE36形成异源二聚体 | ||
EsxD | Rv3891c | Esx类蛋白,与EsxC形成异源二聚体 | ||
EsxC | Rv3890c | Esx类蛋白,与EsxD形成异源二聚体 | 多出现在临床 | |
ESX-3 | EspG3 | Rv0289 | PE/PPE的分子伴侣 | |
PE5 | Rv0285 | 与PPE4形成异源二聚体 | 体外生长缺陷 | |
PPE4 | Rv0286 | 与PE5形成异源二聚体 | 体外生长缺陷 | |
EsxG | Rv0287 | 影响宿主吞噬体膜的修复 | 体外生长缺陷 | |
EsxH | Rv0288 | 影响宿主吞噬体膜的修复 | 体外生长缺陷 | |
Rv3446 | Rv3446 | |||
ESX-4 | EsxU | Rv3445c | 影响了细菌在宿主体内的存活与持留 | |
EsxT | Rv3444c | 影响了细菌在宿主体内的存活与持留 | ||
ESX-5 | Rv1785 | Rv1785 | 参与中间代谢和氧化呼吸 | |
Rv1786 | Rv1786 | 铁氧还蛋白,参与中间代谢和氧化呼吸 | ||
PPE25 | Rv1787 | 与pe19形成异源二聚体 | 有助于体外生长 | |
PE18 | Rv1788 | 形成中性粒细胞胞外陷阱 | 有助于体外生长 | |
PPE26 | Rv1789 | 促进了细菌在宿主体内的存活 | 有助于体外生长 | |
PPE27 | Rv1790 | 促进了细菌在宿主体内的存活 | 有助于体外生长 | |
PE19 | Rv1791 | 促进了细菌在宿主体内的存活,与PPE25形成异源二聚体 | ||
EsxM | Rv1792 | 促进了肉芽肿的形成 | ||
EsxN | Rv1793 | 促进了肉芽肿的形成 | ||
EspG5 | Rv1794 | PE/PPE的分子伴侣 | 体外生长缺陷 |
表3
抗生素作用靶标"
抗生素 | 抗生素英文名 | 作用机理 |
---|---|---|
新生霉素 | Novobiocin | 抑制细菌细胞壁的合成,使细菌迅速破裂溶解 |
异烟肼 | INH(isoniazid) | 抑制结核菌菌壁枝菌酸的合成,扰动电子传递链,影响ATP的产生 |
5-氯吡嗪酰胺 | X5CL_PZA | 能抑制脂肪酸合成酶I(FAS-I)的活性 |
PA824 | PA824 | 主要通过抑制细菌蛋白质合成和细胞壁枝菌酸合成的双重机制达到抑制结核分枝杆菌的效果 |
戊脉安 | Verapamil | 钙拮抗剂 |
缬氨霉素 | Valinomycin | 选择性地与K+离子结合形成脂溶性复合物,使K+容易得通过膜脂双层,呼吸链离子载体抑制剂,通过增加线粒体内膜对K+的通透性,抑制氧化磷酸化作用 |
氯法齐明 | Clofazimine | 干扰核酸代谢,抑制菌体蛋白合成 |
四环素 | Tet(Tetracycline) | 阻止氨酰基与核糖核蛋白体的结合,阻止肽链的增长和蛋白质的合成,从而抑制细菌的生长 |
阿米卡星 | Amikacin | 作用于细菌体内的核糖体,抑制细菌蛋白质合成,并破坏细菌细胞壁的完整性,致使细菌细胞膜破坏,细胞死亡 |
卷曲霉素 | Cap(capreomycin) | 干扰核糖体30S的形成,抑制细菌的生长 |
罗红霉素 | Rox(roxithromycin) | 与细菌50S核糖体亚基结合,通过阻断转肽作用和mRNA移位而抑制细菌蛋白质的合成,从而起抗菌作用 |
表4
龟分枝杆菌感染噬菌体后Esx相关基因的变化情况"
结核分枝杆菌基因 | 龟分枝杆菌基因 | log2FC | 变化 | 结核分枝杆菌基因 | 龟分枝杆菌基因 | log2FC | 变化 |
---|---|---|---|---|---|---|---|
mas | BB28_RS22650 | 3.25 | 上调 | ppsC | BB28_RS21210 | 2.07 | 上调 |
nrp | BB28_RS03915 | 3.64 | 上调 | ppsA | BB28_RS04270 | 2.52 | 上调 |
carB | BB28_RS04260 | 3.87 | 上调 | fas | BB28_RS21245 | 2.13 | 上调 |
mbtB | BB28_RS19005 | 5.32 | 上调 | moxR2 | BB28_RS01885 | -3.18 | 下调 |
pks5 | BB28_RS06235 | 2.96 | 上调 | ligA | BB28_RS01850 | -3.13 | 下调 |
fabG1 | BB28_RS13295 | -2.32 | 下调 | cobN | BB28_RS10315 | 2.11 | 上调 |
dnaE1 | BB28_RS01845 | -4.76 | 下调 | eccB1 | BB28_RS03465 | 2.95 | 上调 |
fadD9 | BB28_RS05390 | 4.14 | 上调 |
[1] |
Stanley SA, Raghavan S, Hwang WW, Cox JS. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci USA, 2003, 100(22): 13001-13006.
pmid: 14557536 |
[2] |
Bunduc CM, Bitter W, Houben ENG. Structure and function of the mycobacterial type VII secretion systems. Annu Rev Microbiol, 2020, 74: 315-335.
doi: 10.1146/annurev-micro-012420-081657 pmid: 32660388 |
[3] |
Gröschel MI, Sayes F, Simeone R, Majlessi L, Brosch R. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol, 2016, 14(11): 677-691.
doi: 10.1038/nrmicro.2016.131 pmid: 27665717 |
[4] |
Newton-Foot M, Warren RM, Sampson SL, van Helden PD, Gey van Pittius NC. The plasmid-mediated evolution of the mycobacterial ESX (Type VII) secretion systems. BMC Evol Biol, 2016, 16: 62.
doi: 10.1186/s12862-016-0631-2 pmid: 26979252 |
[5] |
Houben D, Demangel C, van Ingen J, Perez J, Baldeon L, Abdallah AM, Caleechurn L, Bottai D, van Zon M, de Punder K, van der Laan T, Kant A, Bossers-de Vries R, Willemsen P, Bitter W, van Soolingen D, Brosch R, van der Wel N, Peters PJ. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol, 2012, 14(8): 1287-1298.
doi: 10.1111/j.1462-5822.2012.01799.x pmid: 22524898 |
[6] |
Lienard J, Nobs E, Lovins V, Movert E, Valfridsson C, Carlsson F. The Mycobacterium marinum ESX-1 system mediates phagosomal permeabilization and type I interferon production via separable mechanisms. Proc Natl Acad Sci USA, 2020, 117(2): 1160-1166.
doi: 10.1073/pnas.1911646117 pmid: 31879349 |
[7] |
Osman MM, Pagan AJ, Shanahan JK, Ramakrishnan L. Mycobacterium marinum phthiocerol dimycocerosates enhance macrophage phagosomal permeabilization and membrane damage. PLoS One, 2020, 15(7): e0233252.
doi: 10.1371/journal.pone.0233252 |
[8] |
Gray TA, Clark RR, Boucher N, Lapierre P, Smith C, Derbyshire KM. Intercellular communication and conjugation are mediated by ESX secretion systems in mycobacteria. Science, 2016, 354(6310): 347-350.
pmid: 27846571 |
[9] |
Ates LS. New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Mol Microbiol, 2020, 113(1): 4-21.
doi: 10.1111/mmi.14409 pmid: 31661176 |
[10] |
Bychenko O, Skvortsova Y, Ziganshin R, Grigorov A, Aseev L, Ostrik A, Kaprelyants A, Salina EG, Azhikina T. Mycobacterium tuberculosis small RNA MTS1338 confers pathogenic properties to non-pathogenic Mycobacterium smegmatis. Microorganisms, 2021, 9(2): 414.
doi: 10.3390/microorganisms9020414 |
[11] |
Nath Y, Ray SK, Buragohain AK. Essential role of the ESX-3 associated eccD3 locus in maintaining the cell wall integrity of Mycobacterium smegmatis. Int J Med Microbiol, 2018, 308(7): 784-795.
doi: S1438-4221(18)30086-9 pmid: 30257807 |
[12] |
Wang YC, Tang YT, Lin C, Zhang JL, Mai JT, Jiang J, Gao XX, Li Y, Zhao GP, Zhang L, Liu J. Crosstalk between the ancestral type VII secretion system ESX-4 and other T7SS in Mycobacterium marinum. iScience, 2022, 25(1): 103585.
doi: 10.1016/j.isci.2021.103585 |
[13] | White DW, Elliott SR, Odean E, Bemis LT, Tischler AD. Mycobacterium tuberculosis Pst/SenX3-RegX3 regulates membrane vesicle production independently of ESX-5 activity. mBio, 2018, 9(3): e00778. |
[14] |
Ates LS, Ummels R, Commandeur S, van de Weerd R, Sparrius M, Weerdenburg E, Alber M, Kalscheuer R, Piersma SR, Abdallah AM, Abd El Ghany M, Abdel-Haleem AM, Pain A, Jiménez CR, Bitter W, Houben ENG. Essential role of the ESX-5 secretion system in outer membrane permeability of pathogenic mycobacteria. PLoS Genet, 2015, 11(5): e1005190.
doi: 10.1371/journal.pgen.1005190 |
[15] |
Bottai D, Di Luca M, Majlessi L, Frigui W, Simeone R, Sayes F, Bitter W, Brennan MJ, Leclerc C, Batoni G, Campa M, Brosch R, Esin S. Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation. Mol Microbiol, 2012, 83(6): 1195- 1209.
doi: 10.1111/j.1365-2958.2012.08001.x pmid: 22340629 |
[16] |
Tiwari S, Dutt TS, Chen B, Chen M, Kim J, Dai AZ, Lukose R, Shanley C, Fox A, Karger BR, Porcelli SA, Chan J, Podell BK, Obregon-Henao A, Orme IM, Jacobs WR Jr, Henao-Tamayo M.BCG-Prime and boost with Esx-5 secretion system deletion mutant leads to better protection against clinical strains of Mycobacterium tuberculosis. Vaccine, 2020, 38(45): 7156-7165.
doi: 10.1016/j.vaccine.2020.08.004 pmid: 32978002 |
[17] | Chirakos AE, Nicholson KR, Huffman A, Champion PA. Conserved ESX-1 substrates EspE and EspF are virulence factors that regulate gene expression. Infect Immun, 2020, 88(12): e00289-20. |
[18] |
Solomonson M, Setiaputra D, Makepeace KAT, Lameignere E, Petrotchenko EV, Conrady DG, Bergeron JR, Vuckovic M, DiMaio F, Borchers CH, Yip CK, Strynadka NCJ. Structure of EspB from the ESX-1 type VII secretion system and insights into its export mechanism. Structure, 2015, 23(3): 571-583.
doi: S0969-2126(15)00003-9 pmid: 25684576 |
[19] |
Abdallah AM, Weerdenburg EM, Guan QT, Ummels R, Borggreve S, Adroub SA, Malas TB, Naeem R, Zhang HM, Otto TD, Bitter W, Pain A. Integrated transcriptomic and proteomic analysis of pathogenic mycobacteria and their esx-1 mutants reveal secretion-dependent regulation of ESX-1 substrates and WhiB6 as a transcriptional regulator. PLoS One, 2019, 14(1): e0211003.
doi: 10.1371/journal.pone.0211003 |
[20] |
Bitter W, Houben EN, Bottai D, Brodin P, Brown EJ, Cox JS, Derbyshire K, Fortune SM, Gao LY, Liu J, Gey van Pittius NC, Pym AS, Rubin EJ, Sherman DR, Cole ST, Brosch R. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog, 2009, 5(10): e1000507.
doi: 10.1371/journal.ppat.1000507 |
[21] |
Tuukkanen AT, Freire D, Chan S, Arbing MA, Reed RW, Evans TJ, Zenkeviciute G, Kim J, Kahng S, Sawaya MR, Chaton CT, Wilmanns M, Eisenberg D, Parret AHA, Korotkov KV. Structural variability of EspG chaperones from mycobacterial ESX-1, ESX-3, and ESX-5 type VII secretion systems. J Mol Biol, 2019, 431(2): 289-307.
doi: S0022-2836(18)30423-6 pmid: 30419243 |
[22] |
Phan TH, van Leeuwen LM, Kuijl C, Ummels R, van Stempvoort G, Rubio-Canalejas A, Piersma SR, Jiménez CR, van der Sar AM, Houben ENG, Bitter W. EspH is a hypervirulence factor for Mycobacterium marinum and essential for the secretion of the ESX-1 substrates EspE and EspF. PLoS Pathog, 2018, 14(8): e1007247.
doi: 10.1371/journal.ppat.1007247 |
[23] |
Bunduc CM, Fahrenkamp D, Wald J, Ummels R, Bitter W, Houben ENG, Marlovits TC. Structure and dynamics of a mycobacterial type VII secretion system. Nature, 2021, 593(7859): 445-448.
doi: 10.1038/s41586-021-03517-z |
[24] |
Poweleit N, Czudnochowski N, Nakagawa R, Trinidad DD, Murphy KC, Sassetti CM, Rosenberg OS. The structure of the endogenous ESX-3 secretion system. Elife, 2019, 8: e52983.
doi: 10.7554/eLife.52983 |
[25] |
Beckham KS, Ciccarelli L, Bunduc CM, Mertens HD, Ummels R, Lugmayr W, Mayr J, Rettel M, Savitski MM, Svergun DI, Bitter W, Wilmanns M, Marlovits TC, Parret AHA, Houben ENG. Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis. Nat Microbiol, 2017, 2: 17047.
doi: 10.1038/nmicrobiol.2017.47 pmid: 28394313 |
[26] |
Rivera-Calzada A, Famelis N, Llorca O, Geibel S. Type VII secretion systems: structure, functions and transport models. Nat Rev Microbiol, 2021, 19(9): 567-584.
doi: 10.1038/s41579-021-00560-5 pmid: 34040228 |
[27] |
Tak U, Dokland T, Niederweis M. Pore-forming Esx proteins mediate toxin secretion by Mycobacterium tuberculosis. Nat Commun, 2021, 12(1): 394.
doi: 10.1038/s41467-020-20533-1 pmid: 33452244 |
[28] |
Frigui W, Bottai D, Majlessi L, Monot M, Josselin E, Brodin P, Garnier T, Gicquel B, Martin C, Leclerc C, Cole ST, Brosch R. Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog, 2008, 4(2): e33.
doi: 10.1371/journal.ppat.0040033 |
[29] |
Cao GX, Howard ST, Zhang PP, Wang XS, Chen XL, Samten B, Pang XH. EspR, a regulator of the ESX-1 secretion system in Mycobacterium tuberculosis, is directly regulated by the two-component systems MprAB and PhoPR. Microbiology (Reading), 2015, 161(Pt 3): 477-489.
doi: 10.1099/mic.0.000023 pmid: 25536998 |
[30] |
Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem, 2004, 279(38): 40174-40184.
doi: 10.1074/jbc.M406796200 pmid: 15247240 |
[31] |
Ioerger TR, O'Malley T, Liao RL, Guinn KM, Hickey MJ, Mohaideen N, Murphy KC, Boshoff HI, Mizrahi V, Rubin EJ, Sassetti CM, Barry CE 3rd, Sherman DR, Parish T, Sacchettini JC. Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS One, 2013, 8(9): e75245.
doi: 10.1371/journal.pone.0075245 |
[32] |
Rybniker J, Chen JM, Sala C, Hartkoorn RC, Vocat A, Benjak A, Boy-Röttger S, Zhang M, Székely R, Greff Z, Orfi L, Szabadkai I, Pató J, Kéri G, Cole ST. Anticytolytic screen identifies inhibitors of mycobacterial virulence protein secretion. Cell Host Microbe, 2014, 16(4): 538-548.
doi: 10.1016/j.chom.2014.09.008 pmid: 25299337 |
[33] |
Chatterjee A, Willett JLE, Dunny GM, Duerkop BA. Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS Genet, 2021, 17(1): e1009204.
doi: 10.1371/journal.pgen.1009204 |
[34] |
Cushman J, Freeman E, McCallister S, Schumann A, Hutchison KW, Molloy SD. Increased whiB7 expression and antibiotic resistance in Mycobacterium chelonae carrying two prophages. BMC Microbiol, 2021, 21(1): 176.
doi: 10.1186/s12866-021-02224-z pmid: 34107872 |
[35] | Bernard EM, Fearns A, Bussi C, Santucci P, Peddie CJ, Lai RJ, Collinson LM, Gutierrez MG. M. tuberculosis infection of human iPSC-derived macrophages reveals complex membrane dynamics during xenophagy evasion. J Cell Sci, 2020, 134(5): jcs252973. |
[36] |
Huang TY, Irene D, Zulueta MM, Tai TJ, Lain SH, Cheng CP, Tsai PX, Lin SY, Chen ZG, Ku CC, Hsiao CD, Chyan CL, Hung SC. Structure of the complex between a heparan sulfate octasaccharide and mycobacterial heparin-binding hemagglutinin. Angew Chem Int Ed Engl, 2017, 56(15): 4192-4196.
doi: 10.1002/anie.v56.15 |
[37] |
Hinman AE, Jani C, Pringle SC, Zhan WR, Jain N, Martinot AJ, Barczak AK. Mycobacterium tuberculosis canonical virulence factors interfere with a late component of the TLR2 response. Elife, 2021, 10: e73984.
doi: 10.7554/eLife.73984 |
[38] |
López-Jiménez AT, Cardenal-Muñoz E, Leuba F, Gerstenmaier L, Barisch C, Hagedorn M, King JS, Soldati T. The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium- containing vacuole but have opposite impact on containing the infection. PLoS Pathog, 2018, 14(12): e1007501.
doi: 10.1371/journal.ppat.1007501 |
[39] |
Kim YS, Yang CS, Nguyen LT, Kim JK, Jin HS, Choe JH, Kim SY, Lee HM, Jung M, Kim JM, Kim MH, Jo EK, Jang JC. Mycobacterium abscessus ESX-3 plays an important role in host inflammatory and pathological responses during infection. Microbes Infect, 2017, 19(1): 5-17.
doi: 10.1016/j.micinf.2016.09.001 |
[40] |
Mehra A, Zahra A, Thompson V, Sirisaengtaksin N, Wells A, Porto M, Köster S, Penberthy K, Kubota Y, Dricot A, Rogan D, Vidal M, Hill DE, Bean AJ, Philips JA. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking. PLoS Pathog, 2013, 9(10): e1003734.
doi: 10.1371/journal.ppat.1003734 |
[41] |
Heijmenberg I, Husain A, Sathkumara HD, Muruganandah V, Seifert J, Miranda-Hernandez S, Kashyap RS, Field MA, Krishnamoorthy G, Kupz A. ESX-5-targeted export of ESAT-6 in BCG combines enhanced immunogenicity & efficacy against murine tuberculosis with low virulence and reduced persistence. Vaccine, 2021, 39(50): 7265-7276.
doi: 10.1016/j.vaccine.2021.08.030 pmid: 34420788 |
[42] |
Mi YJ, Bao L, Gu DQ, Luo T, Sun CF, Yang GP. Mycobacterium tuberculosis PPE25 and PPE26 proteins expressed in Mycobacterium smegmatis modulate cytokine secretion in mouse macrophages and enhance mycobacterial survival. Res Microbiol, 2017, 168(3): 234-243.
doi: 10.1016/j.resmic.2016.06.004 |
[43] |
Yang GP, Luo T, Sun CF, Yuan JN, Peng X, Zhang CX, Zhai XQ, Bao L. PPE27 in mycobacterium smegmatis enhances mycobacterial survival and manipulates cytokine secretion in mouse macrophages. J Interferon Cytokine Res, 2017, 37(9): 421-431.
doi: 10.1089/jir.2016.0126 |
[44] |
Singh V, Jamwal S, Jain R, Verma P, Gokhale R, Rao KVS. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe, 2012, 12(5): 669-681.
doi: 10.1016/j.chom.2012.09.012 pmid: 23159056 |
[45] |
Tucci P, Portela M, Chetto CR, González-Sapienza G, Marín M. Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate. PLoS One, 2020, 15(3): e0221837.
doi: 10.1371/journal.pone.0221837 |
[46] |
Immanuel SRC, Arrieta-Ortiz ML, Ruiz RA, Pan M, Lopez Garcia de Lomana A, Peterson EJR, Baliga NS. Quantitative prediction of conditional vulnerabilities in regulatory and metabolic networks using PRIME. NPJ Syst Biol Appl, 2021, 7(1): 43.
doi: 10.1038/s41540-021-00205-6 pmid: 34873198 |
[47] |
Van den Bossche A, Varet H, Sury A, Sismeiro O, Legendre R, Coppee JY, Mathys V, Ceyssens PJ. Transcriptional profiling of a laboratory and clinical Mycobacterium tuberculosis strain suggests respiratory poisoning upon exposure to delamanid. Tuberculosis (Edinb), 2019, 117: 18-23.
doi: 10.1016/j.tube.2019.05.002 |
[1] | 向莎莎, 谢建平. 分枝杆菌非典型错配修复及其在抗生素耐药中的研究进展[J]. 遗传, 2023, 45(11): 1018-1027. |
[2] | 吴丽雯, 曾洁, 薛云新, 赵西林. 细菌Cpx信号转导系统的功能及调控机制研究进展[J]. 遗传, 2021, 43(8): 747-757. |
[3] | 郑宏源, 闫琳, 杨超, 武雅蓉, 秦婧靓, 郝彤宇, 杨大进, 郭云昌, 裴晓燕, 赵彤言, 崔玉军. 溶藻弧菌群体基因组学研究[J]. 遗传, 2021, 43(4): 350-361. |
[4] | 邓雯文, 李才武, 赵思越, 李仁贵, 何永果, 吴代福, 杨盛智, 黄炎, 张和民, 邹立扣. 大熊猫源致病大肠杆菌CCHTP全基因组测序及耐药和毒力基因分析[J]. 遗传, 2019, 41(12): 1138-1147. |
[5] | 张沥元, 黄芙静, 许峻旗, 龚真, 谢建平. 结核分枝杆菌酸抗性基因及其调控网络[J]. 遗传, 2018, 40(7): 546-560. |
[6] | 杨盛智, 吴国艳, 龙梅, 邓雯文, 王红宁, 邹立扣. 鸡蛋生产链中沙门氏菌对抗生素及消毒剂的耐药性研究[J]. 遗传, 2016, 38(10): 948-956. |
[7] | 刘洋, 王邦兴, 刘志永, 韩轶, 谭耀驹, 李昕洁, 刘健雄, 谭守勇, 张天宇. 非一线抗结核药物耐药机制及耐药性诊断研究进展[J]. 遗传, 2016, 38(10): 928-939. |
[8] | 张玉娇, 李晓静, 米凯霞. 结核分枝杆菌耐氟喹诺酮类药物的分子机制研究进展[J]. 遗传, 2016, 38(10): 918-927. |
[9] | 王婷, 焦伟伟, 申阿东. 结核分枝杆菌乙胺丁醇耐药机制的研究进展[J]. 遗传, 2016, 38(10): 910-917. |
[10] | 崔鹏, 许涛, 张文宏, 张颖. 细菌持留与抗生素表型耐药机制[J]. 遗传, 2016, 38(10): 859-871. |
[11] | 樊祥宇, 何颖, 谢建平. 以分枝杆菌噬菌体为例探索生命科学研究型教学[J]. 遗传, 2014, 36(8): 842-846. |
[12] | 彭光华,郑斌娇,方芳,伍越,梁玲芝,郑静,南奔宇,余啸,唐霄雯,朱翌,吕建新,陈波蓓,管敏鑫. 25个携带线粒体12S rRNA A1555G突变的中国汉族非综合征型耳聋家系[J]. 遗传, 2013, 35(1): 62-72. |
[13] | 杜庆林,樊祥宇,毛金校,谢建平. 分枝杆菌中基因敲除操作工具研究进展[J]. 遗传, 2012, 34(7): 857-862. |
[14] | 乔旭,吴芬芳,苏鹏,李庆伟. CDC/MACPF家族成孔毒素研究进展[J]. 遗传, 2010, 32(11): 1126-1132. |
[15] | 杨爱芬,朱翌,吕建新,杨丽,赵建越,孙冬梅,管敏鑫. 线粒体DNA G7444A突变可能影响A1555G突变的表型表达[J]. 遗传, 2008, 30(6): 728-734. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: