[1] | Jiang DW, Zhu W, Wang YC, Sun C, Zhang KQ, Yang JK. Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv, 2013, 31(8): 1562-1574. | [2] | Osiewacz HD. Genes, mitochondria and aging in filamentous fungi. Ageing Res Rev, 2002, 1(3): 425-442. | [3] | Long LK, Wang YL, Yang J, Xu XX, Liu G. A septation related gene AcsepH in Acremonium chrysogenum is involved in the cellular differentiation and cephalosporin production. Fungal Genet Biol, 2013, 50: 11-20. | [4] | Liu L, Long LK, An Y, Yang J, Xu XX, Hu CH, Liu G. The thioredoxin reductase-encoding gene ActrxR1 is involved in the cephalosporin C production of Acremonium chrysogenum in methionine-supplemented medium. Appl Microbiol Biotechnol, 2013, 97(6): 2551-2562. | [5] | Li JY, Pan YY, Liu G. Disruption of the nitrogen regulatory gene AcareA in Acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism. Fungal Genet Biol, 2013, 61: 69-79. | [6] | Wang HT, Pan YY, Hu PJ, Zhu YX, Li JY, Jiang XJ, Liu G. The autophagy-related gene Acatg1 is involved in conidiation and cephalosporin production in Acremonium chrysogenum. Fungal Genet Biol, 2014, 69: 65-74. | [7] | Hu PJ, Wang Y, Zhou J, Pan YY, Liu G. AcstuA, which encodes an APSES transcription regulator, is involved in conidiation, cephalosporin biosynthesis and cell wall integrity of Acremonium chrysogenum. Fungal Genet Biol, 2015, 83: 26-40. | [8] | Li J, Zhang Y, Chen KL, Shan QW, Wang YP, Liang Z, Gao CX. CRISPR/Cas: a novel way of RNA-guided genome editing. Hereditas (Beijing), 2013, 35(11): 1265-1273. | [8] | 李君, 张毅, 陈坤玲, 单奇伟, 王延鹏, 梁振, 高彩霞. CRISPR/Cas系统: RNA靶向的基因组定向编辑新技术. 遗传, 2013, 35(11): 1265-1273. | [9] | Wei CX, Liu JY, Yu ZS, Zhang B, Gao GJ, Jiao RJ. TALEN or Cas9-rapid, efficient and specific choices for genome modifications. J Genet Genomics, 2013, 40(6): 281-289. | [10] | da Silva Ferreira ME, Kress MRVZ, Savoldi M, Goldman MHS, H?rtl A, Heinekamp T, Brakhage AA, Goldman GH. The akuB KU80 mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell, 2006, 5(1): 207-211. | [11] | Mouyna I, Henry C, Doering TL, Latgé JP. Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus. FEMS Microbiol Lett, 2004, 237(2): 317-324. | [12] | Henry C, Mouyna I, Latgé JP. Testing the efficacy of RNA interference constructs in Aspergillus fumigatus. Curr Genet, 2007, 51(4): 277-284. | [13] | Shan QW, Gao CX. Research progress of genome editing and derivative technologies in plants. Hereditas (Beijing), 2015, 37(10): 953-973. |
[1] |
Xiaoping Lian, Guangfu Huang, Yujiao Zhang, Jing Zhang, Fengyi Hu, Shilai Zhang.
The discovery and utilization of favorable genes in Oryza longistaminata
[J]. Hereditas(Beijing), 2023, 45(9): 765-780.
|
[2] |
Bingzheng Wang, Chao Zhang, Jiali Zhang, Jin Sun.
Conditional editing of the Drosophila melanogaster genome using single transcripts expressing Cas9 and sgRNA
[J]. Hereditas(Beijing), 2023, 45(7): 593-601.
|
[3] |
Zhongsheng Wu, Yu Gao, Yongtao Du, Song Dang, Kangmin He.
The protocol of tagging endogenous proteins with fluorescent tags using CRISPR-Cas9 genome editing
[J]. Hereditas(Beijing), 2023, 45(2): 165-175.
|
[4] |
Meizhen Liu, Liren Wang, Yongmei Li, Xueyun Ma, Honghui Han, Dali Li.
Generation of genetically modified rat models via the CRISPR/Cas9 technology
[J]. Hereditas(Beijing), 2023, 45(1): 78-87.
|
[5] |
Xiaojun Zhang, Kun Xu, Juncen Shen, Lu Mu, Hongrun Qian, Jieyu Cui, Baoxia Ma, Zhilong Chen, Zhiying Zhang, Zehui Wei.
A CRISPR/Cas9-Gal4BD donor adapting system for enhancing homology-directed repair
[J]. Hereditas(Beijing), 2022, 44(8): 708-719.
|
[6] |
Chong Zhang, Zixuan Wei, Min Wang, Yaosheng Chen, Zuyong He.
Editing MC1R in human melanoma cells by CRISPR/Cas9 and functional analysis
[J]. Hereditas(Beijing), 2022, 44(7): 581-590.
|
[7] |
Ziwen Shi, Qing He, Zhuofan Zhao, Xiaowei Liu, Peng Zhang, Moju Cao.
Exploration and utilization of maize male sterility resources
[J]. Hereditas(Beijing), 2022, 44(2): 134-152.
|
[8] |
Yao Liu, Xianhui Zhou, Shuhong Huang, Xiaolong Wang.
Prime editing: a search and replace tool with versatile base changes
[J]. Hereditas(Beijing), 2022, 44(11): 993-1008.
|
[9] |
Yuting Han, Bowen Xu, Yutong Li, Xinyi Lu, Xizhi Dong, Yuhao Qiu, Qinyun Che, Ruibao Zhu, Li Zheng, Xiaochen Li, Xu Si, Jianquan Ni.
The cutting edge of gene regulation approaches in model organism Drosophila
[J]. Hereditas(Beijing), 2022, 44(1): 3-14.
|
[10] |
Haitao Wang, Tingting Li, Xun Huang, Runlin Ma, Qiuyue Liu.
Application of genetic modification technologies in molecular design breeding of sheep
[J]. Hereditas(Beijing), 2021, 43(6): 580-600.
|
[11] |
Guangwu Yang, Yuan Tian.
The F-box gene Ppa promotes lipid storage in Drosophila
[J]. Hereditas(Beijing), 2021, 43(6): 615-622.
|
[12] |
Dingwei Peng, Ruiqiang Li, Wu Zeng, Min Wang, Xuan Shi, Jianhua Zeng, Xiaohong Liu, Yaoshen Chen, Zuyong He.
Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs
[J]. Hereditas(Beijing), 2021, 43(3): 261-270.
|
[13] |
Na Wang, Zhilian Jia, Qiang Wu.
RFX5 regulates gene expression of the Pcdhα cluster
[J]. Hereditas(Beijing), 2020, 42(8): 760-774.
|
[14] |
Guoling Li, Shanxin Yang, Zhenfang Wu, Xianwei Zhang.
Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals
[J]. Hereditas(Beijing), 2020, 42(7): 641-656.
|
[15] |
Yingnan Chen, Jing Lu.
Application of CRISPR/Cas9 mediated gene editing in trees
[J]. Hereditas(Beijing), 2020, 42(7): 657-668.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|