[1] Sethi S, Murphy TF. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev , 2001, 14(2): 336-363. [2] Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LVJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol , 2015, 13(1): 42-51. [3] Hampton T. Report reveals scope of US antibiotic resistance threat. JAMA , 2013, 310(16): 1661-1663. [4] Walsh CT, Garneau-Tsodikova S, Gatto JG Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed , 2005, 44(45): 7342-7372. [5] Tsuchido T, Takano M. Sensitization by heat treatment of Escherichia coli K-12 cells to hydrophobic antibacterial compounds. Antimicrob Agents Chemother , 1988, 32(11): 1680-1683. [6] Jackson LA, Pan JC, Day MW, Dyer DW. Control of RNA stability by NrrF, an iron-regulated small RNA in Neisseria gonorrhoeae . J Bacteriol, 2013, 195(22): 5166-5173. [7] Chuanchuen R, Karkhoff-Schweizer RR, Schweizer HP. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am J Infect Control , 2003, 31(2): 124-127. [8] Vranakis I, Goniotakis I, Psaroulaki A, Sandalakis V, Tselentis Y, Gevaert K, Tsiotis G. Proteome studies of bacterial antibiotic resistance mechanisms. J Proteomics , 2014, 97: 88-99. [9] Mc Dermott PF, Walker RD, White DG. Antimicrobials: modes of action and mechanisms of resistance. Int J Toxicol , 2003, 22(2): 135-143. [10] Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev , 2001, 14(4): 933-951. [11] Collier J. Epigenetic regulation of the bacterial cell cycle. Curr Opin Microbiol , 2009, 12(6): 722-729. [12] Heusipp G, Fälker S, Schmidt MA. DNA adenine methylation and bacterial pathogenesis. Int J Med Microbiol , 2007, 297(1): 1-7. [13] Low DA, Weyand NJ, Mahan MJ. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect Immun , 2001, 69(12): 7197-7204. [14] Militello KT, Mandarano AH, Varechtchouk O, Simon RD. Cytosine DNA methylation influences drug resistance in Escherichia coli through increased sugE expression. FEMS Microbiol Lett , 2014, 350(1): 100-106. [15] Srikhanta YN, Maguire TL, Stacey KJ, Grimmond SM, Jennings MP. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc Natl Acad Sci USA , 2005, 102(15): 5547-5551. [16] Srikhanta YN, Fox KL, Jennings MP. The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat Rev Microbiol , 2010, 8(3): 196-206. [17] Seib KL, Pigozzi E, Muzzi A, Gawthorne JA, Delany I, Jennings MP, Rappuoli R. A novel epigenetic regulator associated with the hypervirulent Neisseria meningitidis clonal complex 41/44. FASEB J , 2011, 25(10): 3622-3633. [18] Srikhanta YN, Dowideit SJ, Edwards JL, Falsetta ML, Wu HJ, Harrison OB, Fox KL, Seib KL, Maguire TL, Wang AHJ, Maiden MC, Grimmond SM, Apicella MA, Jennings MP. Phasevarions mediate random switching of gene expression in pathogenic Neisseria . PLoS Pathog , 2009, 5(4): e1000400. [19] Jen FEC, Seib KL, Jennings MP. Phasevarions mediate epigenetic regulation of antimicrobial susceptibility in Neisseria meningitidis . Antimicrob Agents Chemother , 2014, 58(7): 4219-4221. [20] Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, Suzuki Y, Ochi K. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol , 2007, 63(4): 1096-1106. [21] Nishimura K, Johansen SK, Inaoka T, Hosaka T, Tokuyama S, Tahara Y, Okamoto S, Kawamura F, Douthwaite S, Ochi K. Identification of the RsmG methyltransferase target as 16S rRNA nucleotide G527 and characterization of Bacillus subtilis rsmG mutants. J Bacteriol , 2007, 189(16): 6068-6073. [22] Gregory ST, Demirci H, Belardinelli R, Monshupanee T, Gualerzi C, Dahlberg AE, Jog G. Structural and functional studies of the Thermus thermophilus 16S rRNA methyltransferase RsmG. RNA , 2009, 15(9): 1693-1704. [23] Mikheil DM, Shippy DC, Eakley NM, Okwumabua OE, Fadl AA. Deletion of gene encoding methyltransferase ( gidB ) confers high-level antimicrobial resistance in Salmonella . J Antibiot , 2012, 65(4): 185-192. [24] Kim KR, Kim TJ, Suh JW. The gene cluster for spectinomycin biosynthesis and the aminoglycoside-resistance function of spcM in Streptomyces spectabilis . Curr Microbiol , 2008, 57(4): 371-374. [25] Périchon B, Bogaerts P, Lambert T, Frangeul L, Courvalin P, Galimand M. Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Antimicrob Agents Chemother , 2008, 52(7): 2581-2592. [26] Waters LS, Storz G. Regulatory RNAs in bacteria. Cell , 2009, 136(4): 615-628. [27] Lalaouna D, Eyraud A, Chabelskaya S, Felden B, Massé E. Regulatory RNAs involved in bacterial antibiotic resistance. PLoS Pathog , 2014, 10(8): e1004299. [28] Yu J, Schneiders T. Tigecycline challenge triggers sRNA production in Salmonella enterica serovar Typhimurium. BMC Microbiol , 2012, 12: 195. [29] Howden BP, Beaume M, Harrison PF, Hernandez D, Schrenzel J, Seemann T, Francois P, Stinear TP. Analysis of the small RNA transcriptional response in multidrug-resistant Staphylococcus aureus after antimicrobial exposure. Antimicrob Agents Chemother , 2013, 57(8): 3864-3874. [30] Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta , 2009, 1794(5): 808-816. [31] Coornaert A, Chiaruttini C, Springer M, Guillier M. Post-transcriptional control of the Escherichia coli PhoQ-PhoP two-component system by multiple sRNAs involves a novel pairing region of GcvB. PLoS Genet , 2013, 9(1): e1003156. [32] Moon K, Six DA, Lee HJ, Raetz CRH, Gottesman S. Complex transcriptional and post-transcriptional regulation of an enzyme for Lipopolysaccharide modification. Mol Microbiol , 2013, 89(1): 52-64. [33] Eyraud A, Tattevin P, Chabelskaya S, Felden B. A small RNA controls a protein regulator involved in antibiotic resistance in Staphylococcus aureus . Nucleic Acids Res , 2014, 42(8): 4892-4905. [34] Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria: an update. Drugs , 2009, 69(12): 1555-1623. [35] Nishino K, Yamasaki S, Hayashi-Nishino M, Yamaguchi A. Effect of overexpression of small non-coding DsrA RNA on multidrug efflux in Escherichia coli . J Antimicrob Chemother , 2011, 66(2): 291-296. [36] Nudler E, Mironov AS. The riboswitch control of bacterial metabolism. Trends Biochem Sci , 2004, 29(1): 11-17. [37] Pedrolli, DB, Matern A, Wang J, Ester M, Siedler K, Breaker R, Mack M. A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis . Nucleic Acids Res , 2012, 40(17): 8662-8673. [38] Serganov A, Patel DJ. Amino acid recognition and gene regulation by riboswitches. Biochim Biophys Acta , 2009, 1789(9-10): 592-611. [39] Serganov A, Huang LL, Patel DJ. Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature , 2008, 455(7217): 1263-1267. [40] Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell , 2003, 113(5): 577-586. [41] Feng XL, Liu LB, Duan XR, Wang S. An engineered riboswitch as a potential gene-regulatory platform for reducing antibacterial drug resistance. Chem Commun , 2011, 47(1): 173-175. [42] Jia X, Zhang J, Sun WX, He WZ, Jiang HY, Chen DR, Murchie AIH. Riboswitch control of aminoglycoside antibiotic resistance. Cell , 2013, 152(1-2): 68-81. [43] Beltramini AM, Mukhopadhyay CD, Pancholi V. Modulation of cell wall structure and antimicrobial susceptibility by a Staphylococcus aureus eukaryote-like serine/threonine kinase and phosphatase. Infect Immun , 2009, 77(4): 1406-1416. [44] Sun F, Ding Y, Ji QJ, Liang ZJ, Deng X, Wong CCL, Yi CQ, Zhang L, Xie S, Alvarez S, Hicks LM, Luo C, Jiang HL, Lan LF, He C. Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediaotes bacterial virulence and antibiotic resistance. Proc Natl Acad Sci USA , 2012, 109(38): 15461-15466. [45] Canova MJ, Baronian G, Brelle S, Cohen-Gonsaud M, Bischoff M, Molle V. A novel mode of regulation of the Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR mediated by Stk1 protein phosphorylation. Biochem Biophys Res Commun , 2014, 447(1): 165-171. [46] Soares NC, Spät P, Méndez JA, Nakedi K, Aranda J, Bou G. Ser/Thr/Tyr phosphoproteome characterization of Acinetobacter baumannii : comparison between a reference strain and a highly invasive multidrug-resistant clinical isolate. J Proteomics, 2014, 102: 113-124. [47] Colak G, Xie ZY, Zhu AY, Dai LZ, Lu ZK, Zhang Y, Wan XL, Chen Y, Cha YH, Lin HN, Zhao YM, Tan MJ. Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli . Mol Cell Proteomics , 2013, 12(12): 3509-3520. [48] Weinert BT, Schölz C, Wagner SA, Iesmantavicius V, Su D, Daniel JA, Choudhary C. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep , 2013, 4(4): 842-851. [49] Xie LX, Liu W, Li QM, Chen SD, Xu MM, Huang QQ, Zeng J, Zhou ML, Xie JP. First succinyl-proteome profiling of extensively drug-resistant Mycobacterium tuberculosis revealed involvement of succinylation in cellular physiology. J Proteome Res , 2015, 14(1): 107-119. [50] Lluch-Senar M, Luong K, Lloréns-Rico V, Delgado J, Fang G, Spittle K, Clark TA, Schadt E, Turner SW, Korlach J, Serrano L. Comprehensive methylome characterization of Mycoplasma genitalium and Mycoplasma pneumoniae at single-base resolution. PLoS Genet , 2013, 9(1): e1003191. [51] Zhang K, Zheng SZ, Yang JS, Chen Y, Cheng ZY. Comprehensive profiling of protein lysine acetylation in Escherichia coli . J Proteome Res , 2013, 12(2): 844-851. (责任编委: 包其郁) |