[1] McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA , 1950, 36(6): 344-355. [2] Chénais B, Caruso A, Hiard S, Casse N. The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene , 2012, 509(1): 7-15. [3] Huang CRL, Burns KH, Boeke JD. Active transposition in genomes. Annu Rev Genet , 2012, 46: 651-675. [4] Vitte C, Fustier MA, Alix K, Tenaillon MI. The bright side of transposons in crop evolution. Brief Funct Genomics , 2014, 13(4): 276-295. [5] Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. A unified classification system for eukaryotic transposable elements. Nat Rev Genet , 2007, 8(12): 973-982. [6] Wessler SR. Transposable elements and the evolution of eukaryotic genomes. Proc Natl Acad Sci USA , 2006, 103(47): 17600-17601. [7] Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet , 2007, 8(4): 272-285. [8] Ayarpadikannan S, Kim HS. The impact of transposable elements in genome evolution and genetic instability and their implications in various diseases. Genomics Inform , 2014, 12(3): 98-104. [9] Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol , 2014, 65: 505-530. [10] Gifford WD, Pfaff SL, Macfarlan TS. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol , 2013, 23(5): 218-226. [11] Lee SI, Kim NS. Transposable elements and genome size variations in plants. Genomics Inform , 2014, 12(3): 87-97. [12] Sentmanat M, Wang SH, Elgin SCR. Targeting heterochromatin formation to transposable elements in Drosophila : potential roles of the piRNA system. Biochemistry (Mosc) , 2013, 78(6): 562-571. [13] 赵美霞, 张彪, 刘胜毅, 马渐新. 白菜和甘蓝基因组转座子表达及其对基因调控的潜在影响. 遗传, 2013, 35(8): 1014-1022. [14] Dean C, Sjodin C, Bancroft I, Lawson E, Lister C, Scofield S, Jones J. Development of an efficient transposon tagging system in Arabidopsis thaliana. Symp Soc Exp Biol , 1991, 45: 63-75. [15] Izawa T, Ohnishi T, Nakano T, Ishida N, Enoki H, Hashimoto H, Itoh K, Terada R, Wu C, Miyazaki C, Endo T, Iida S, Shimamoto K. Transposon tagging in rice. Plant Mol Biol , 1997, 35(1-2): 219-229. [16] Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity , 2011, 106(4): 520-530. [17] Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol , 2009, 25(4): 195-203. [18] Bennett S. Solexa Ltd. Pharmacogenomics , 2004, 5(4): 433-438. [19] Bentley DR. Whole-genome re-sequencing. Curr Opin Genet Dev , 2006, 16(6): 545-552. [20] Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen ZT, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu PG, Begley RF, Rothberg JM. Genome sequencing in microfabricated high-density picolitre reactors. Nature , 2005, 437(7057): 376-380. [21] Shendure J, Porreca GJ, Reppas NB, Lin XX, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM. Accurate multiplex polony sequencing of an evolved bacterial genome. Science , 2005, 309(5741): 1728-1732. [22] Korlach J, Bjornson KP, Chaudhuri BP, Cicero RL, Flusberg BA, Gray JJ, Holden D, Saxena R, Wegener J, Turner SW. Real-time DNA sequencing from single polymerase |