遗传 ›› 2015, Vol. 37 ›› Issue (10): 953-973.doi: 10.16288/j.yczz.15-156

• 综述 • 上一篇    下一篇

植物基因组编辑及衍生技术最新研究进展

单奇伟, 高彩霞   

  1. 中国科学院遗传与发育生物学研究所,植物细胞与染色体工程国家重点实验室,北京 100101
  • 收稿日期:2015-04-13 出版日期:2015-10-20 发布日期:2015-10-20
  • 通讯作者: 高彩霞,博士,研究员,博士生导师,研究方向:遗传学。E-mail: cxgao@genetics.ac.cn
  • 作者简介:单奇伟,博士,研究方向:遗传学。E-mail: qwshan@icloud.com
  • 基金资助:
    国家自然科学基金项目(编号:31420103912和31271795)和转基因重大专项(编号:2014ZX0801003B)资助

Research progress of genome editing and derivative technologies in plants

Qiwei Shan, Caixia Gao   

  1. State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2015-04-13 Online:2015-10-20 Published:2015-10-20

摘要: 基因组编辑技术已经在多个模式植物、动物以及其他生物中得到成功应用。基因组编辑是利用序列特异核酸酶(Sequence-specific nucleases, SSNs)在基因组特定位点产生DNA双链断裂(Double-strand breaks, DSBs),从而激活细胞自身修复机制——非同源末端连接(Non-homologous end joining, NHEJ)或同源重组(Homologous recombination, HR),实现基因敲除、染色体重组以及基因定点插入或替换等。锌指核酸酶(Zinc finger nuclease, ZFN)、TALEN(Transcription activator-like effector nuclease)和CRISPR/Cas9(Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9)系统是最主要的3类SSNs。ZFN和TALEN是利用蛋白与DNA结合方式靶向特定的基因组位点,而最新的CIRISPR/Cas9系统则是利用更简单的核苷酸互补配对方式结合在基因组靶位点,其构建简单、效率更高效,因而促进了基因组编辑在植物中的广泛应用。利用基因组编辑技术除了实现植物基因定点突变外,还可以将SSNs的DNA结合域与其他功能蛋白融合,实现基因的靶向激活、抑制和表观调控等衍生技术。本文从基因组编辑技术的原理与优势、SSNs组成及构建方法、基因组编辑及衍生技术在植物中应用、优化SSNs突变效率和减少脱靶突变方法等方面进行了系统介绍,并对未来需要迫切解决的一些问题进行了分析和展望。

关键词: 基因组编辑, ZFN, TALEN, CRISPR/Cas9, 同源重组, 脱靶突变

Abstract: Genome editing technologies using engineered nucleases have been widely used in many model organisms. Genome editing with sequence-specific nuclease (SSN) creates DNA double-strand breaks (DSBs) in the genomic target sites that are primarily repaired by the non-homologous end joining (NHEJ) or homologous recombination (HR) pathways, which can be employed to achieve targeted genome modifications such as gene mutations, insertions, replacements or chromosome rearrangements. There are three major SSNs—zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system. In contrast to ZFN and TALEN, which require substantial protein engineering to each DNA target, the CRISPR/Cas9 system requires only a change in the guide RNA. For this reason, the CRISPR/Cas9 system is a simple, inexpensive and versatile tool for genome engineering. Furthermore, a modified version of the CRISPR/Cas9 system has been developed to recruit heterologous domains that can regulate endogenous gene expression, such as activation, depression and epigenetic regulation. In this review, we summarize the development and applications of genome editing technologies for basic research and biotechnology, as well as highlight challenges and future directions, with particular emphasis on plants.

Key words: genome editing, ZFN, TALEN, CRISPR/Cas9, homologous recombination, off-target mutation