[1] Voytas DF. Plant genome engineering with sequence- specific nucleases. Annu Rev Plant Biol, 2013, 64(1): 327–350. [2] Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet, 2011, 45(1): 247–271. [3] Puchta H, Fauser F. Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J, 2013, 78(5): 727–741. [4] Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways. Mutat Res Fund Mol Mech Mut, 2011, 711(1–2): 61–72. [5] Osakabe K, Osakabe Y, Toki S. Site-directed mutag?enesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci USA, 2010, 107(26): 12034–12039. [6] Siebert R, Puchta H. Efficient repair of genomic double-strand breaks by homologous recombination bet?ween directly repeated sequences in the plant genome. Plant Cell, 2002, 14(5): 1121–1131. [7] Orel N, Kyryk A, Puchta H. Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged seque?nces in the plant genome. Plant J, 2003, 35(5): 604–612. [8] Carroll D. Genome engineering with targetable nucleases. Annu Rev Biochem, 2014, 83(1): 409–439. [9] Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA, 1996, 93(3): 1156–1160. [10] Kim JS, Lee HJ, Carroll D. Genome editing with modularly assembled zinc-finger nucleases. Nat Methods, 2010, 7(2): 91. [11] Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Müller-Lerch F, Fu FL, Pearlberg J, G?bel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK. Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modifi?cation. Mol Cell, 2008, 31(2): 294–301. [12] Doyon Y, Choi VM, Xia DF, Vo TD, Gregory PD, Holmes MC. Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods, 2010, 7(6): 459–460. [13] Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau- Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JRJ, Joung JK. Selection-free zinc-finger-nuclease engineer?ing by context-dependent assembly (CoDA). Nat Met?hods, 2010, 8(1): 67–69. [14] 沈延, 肖安, 黄鹏, 王唯晔, 朱作言, 张博. 类转录激活因子效应物核酸酶(TALEN)介导的基因组定点修饰技术. 遗传, 2013, 35(4): 395–409. [15] Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326(5959): 1509–1512. [16] Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326(5959): 1501. [17] Deng D, Yan CY, Pan XJ, Mahfouz M, Wang JW, Zhu JK, Shi YG, Yan N. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science, 2012, 335(6069): 720–723. [18] Mak ANS, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science, 2012, 335(6069): 716–719. [19] Li T, Huang S, Zhao XF, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res, 2011, 39(14): 6315–6325. [20] Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res, 2011, 39(12): e82. [21] Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. FLA |