遗传 ›› 2015, Vol. 37 ›› Issue (10): 953-973.doi: 10.16288/j.yczz.15-156
单奇伟, 高彩霞
收稿日期:
2015-04-13
出版日期:
2015-10-20
发布日期:
2015-10-20
通讯作者:
高彩霞,博士,研究员,博士生导师,研究方向:遗传学。E-mail: cxgao@genetics.ac.cn
作者简介:
单奇伟,博士,研究方向:遗传学。E-mail: qwshan@icloud.com
基金资助:
Qiwei Shan, Caixia Gao
Received:
2015-04-13
Online:
2015-10-20
Published:
2015-10-20
摘要: 基因组编辑技术已经在多个模式植物、动物以及其他生物中得到成功应用。基因组编辑是利用序列特异核酸酶(Sequence-specific nucleases, SSNs)在基因组特定位点产生DNA双链断裂(Double-strand breaks, DSBs),从而激活细胞自身修复机制——非同源末端连接(Non-homologous end joining, NHEJ)或同源重组(Homologous recombination, HR),实现基因敲除、染色体重组以及基因定点插入或替换等。锌指核酸酶(Zinc finger nuclease, ZFN)、TALEN(Transcription activator-like effector nuclease)和CRISPR/Cas9(Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9)系统是最主要的3类SSNs。ZFN和TALEN是利用蛋白与DNA结合方式靶向特定的基因组位点,而最新的CIRISPR/Cas9系统则是利用更简单的核苷酸互补配对方式结合在基因组靶位点,其构建简单、效率更高效,因而促进了基因组编辑在植物中的广泛应用。利用基因组编辑技术除了实现植物基因定点突变外,还可以将SSNs的DNA结合域与其他功能蛋白融合,实现基因的靶向激活、抑制和表观调控等衍生技术。本文从基因组编辑技术的原理与优势、SSNs组成及构建方法、基因组编辑及衍生技术在植物中应用、优化SSNs突变效率和减少脱靶突变方法等方面进行了系统介绍,并对未来需要迫切解决的一些问题进行了分析和展望。
单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展[J]. 遗传, 2015, 37(10): 953-973.
Qiwei Shan, Caixia Gao. Research progress of genome editing and derivative technologies in plants[J]. HEREDITAS(Beijing), 2015, 37(10): 953-973.
[1] Voytas DF. Plant genome engineering with sequence- specific nucleases. Annu Rev Plant Biol, 2013, 64(1): 327–350. [2] Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet, 2011, 45(1): 247–271. [3] Puchta H, Fauser F. Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J, 2013, 78(5): 727–741. [4] Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways. Mutat Res Fund Mol Mech Mut, 2011, 711(1–2): 61–72. [5] Osakabe K, Osakabe Y, Toki S. Site-directed mutag?enesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci USA, 2010, 107(26): 12034–12039. [6] Siebert R, Puchta H. Efficient repair of genomic double-strand breaks by homologous recombination bet?ween directly repeated sequences in the plant genome. Plant Cell, 2002, 14(5): 1121–1131. [7] Orel N, Kyryk A, Puchta H. Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged seque?nces in the plant genome. Plant J, 2003, 35(5): 604–612. [8] Carroll D. Genome engineering with targetable nucleases. Annu Rev Biochem, 2014, 83(1): 409–439. [9] Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA, 1996, 93(3): 1156–1160. [10] Kim JS, Lee HJ, Carroll D. Genome editing with modularly assembled zinc-finger nucleases. Nat Methods, 2010, 7(2): 91. [11] Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Müller-Lerch F, Fu FL, Pearlberg J, G?bel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK. Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modifi?cation. Mol Cell, 2008, 31(2): 294–301. [12] Doyon Y, Choi VM, Xia DF, Vo TD, Gregory PD, Holmes MC. Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods, 2010, 7(6): 459–460. [13] Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau- Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JRJ, Joung JK. Selection-free zinc-finger-nuclease engineer?ing by context-dependent assembly (CoDA). Nat Met?hods, 2010, 8(1): 67–69. [14] 沈延, 肖安, 黄鹏, 王唯晔, 朱作言, 张博. 类转录激活因子效应物核酸酶(TALEN)介导的基因组定点修饰技术. 遗传, 2013, 35(4): 395–409. [15] Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326(5959): 1509–1512. [16] Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326(5959): 1501. [17] Deng D, Yan CY, Pan XJ, Mahfouz M, Wang JW, Zhu JK, Shi YG, Yan N. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science, 2012, 335(6069): 720–723. [18] Mak ANS, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science, 2012, 335(6069): 716–719. [19] Li T, Huang S, Zhao XF, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res, 2011, 39(14): 6315–6325. [20] Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res, 2011, 39(12): e82. [21] Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol, 2012, 30(5): 460–465. [22] Schmid-Burgk JL, Schmidt T, Kaiser V, H?ning K, Hornung V. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol, 2013, 31(1): 76–81. [23] Sorek R, Lawrence CM, Wiedenheft B. CRISPR- mediated adaptive immune systems in bacteria and arc?haea. Annu Rev Biochem, 2013, 82(1): 237–266. [24] 李君, 张毅, 陈坤玲, 单奇伟, 王延鹏, 梁振, 高彩霞. CRISPR/Cas系统: RNA靶向的基因组定向编辑新技术. 遗传, 2013, 35(11): 1265–1273. [25] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821. [26] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823. [27] Jinek M, Jiang FG, Taylor DW, Sternberg SH, Kaya E, Ma EB, Anders C, Hauer M, Zhou KH, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA. Structures of Cas9 endonucleases reveal RNA-medi?ated conformational activation. Science, 2014, 343(6176): 1247997. [28] Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5): 935–949. [29] Zhang H, Zhang JS, Wei PL, Zhang BT, Gou F, Feng ZY, Mao YF, Yang L, Zhang H, Xu NF, Zhu JK. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J, 2014, 12(6): 797–807. [30] Feng ZY, Mao YF, Xu NF, Zhang BT, Wei PL, Yang DL, Wang Z, Zhang ZJ, Zheng R, Yang L, Zeng L, Liu XD, Zhu JK. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA, 2014, 111(12): 4632–4637. [31] Bogdanove AJ. Principles and applications of TAL effectors for plant physiology and metabolism. Curr Opin Plant Biol, 2014, 19: 99–104. [32] Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li XH, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA, 2010, 107(26): 12028–12033. [33] Li T, Liu B, Spalding MH, Weeks DP, Yang B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol, 2012, 30(5): 390–392. [34] Shan QW, Zhang Y, Chen KL, Zhang K, Gao CX. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J, 2015, 13(6): 791–800. [35] Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J, 2014, 12(7): 934–940. [36] Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32(9): 947–951. [37] 王延鹏, 程曦, 高彩霞, 邱金龙. 利用基因组编辑技术创制抗白粉病小麦. 遗传, 2014, 36(8): 848. [38] Li JF, Norville JE, Aach J, McCormack M, Zhang DD, Bush J, Church GM, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol, 2013, 31(8): 688–691. [39] Feng ZY, Zhang BT, Ding WN, Liu XD, Yang DL, Wei PL, Cao FQ, Zhu SH, Zhang F, Mao YF, Zhu JK. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013, 23(10): 1229–1232. [40] Shan QW, Wang YP, Li J, Zhang Y, Chen KL, Liang Z, Zhang K, Liu JX, Xi JJ, Qiu JL, Gao CX. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013, 31(8): 686–688. [41] Xie KB, Yang YN. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant, 2013, 6(6): 1975–1983. [42] Miao J, Guo DS, Zhang JZ, Huang QP, Qin GJ, Zhang X, Wan JM, Gu HY, Qu LJ. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res, 2013, 23(10): 1233–1236. [43] Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug II RG, Tan WF, Penheiter SG, Ma AC, Leung AYH, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC. In vivo genome editing using a high-efficiency TALEN system. Nature, 2012, 491(7422): 114–118. [44] Maresca M, Lin VG, Guo N, Yang Y. Obligate ligation- gated recombination (ObLiGaRe): custom-designed nuc?lease-mediated targeted integration through nonhomo?logous end joining. Genome Res, 2013, 23(3): 539–546. [45] Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J, 2005, 44(4): 693–705. [46] Townsend JA, Wright DA, Winfrey RJ, Fu FL, Maeder ML, Joung JK, Voytas DF. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature, 2009, 459(7245): 442–445. [47] Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 2009, 459(7245): 437–441. [48] Zhang Y, Zhang F, Li XH, Baller JA, Qi YP, Starker CG, Bogdanove AJ, Voytas DF. TALENs enable efficient plant genome engineering. Plant Physiol, 2013, 161(1): 20–27. [49] Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J, 2014, 79(2): 348–359. [50] Qi YP, Li XH, Zhang Y, Starker CG, Baltes NJ, Zhang F, Sander JD, Reyon D, Joung JK, Voytas DF. Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3: Genes|Genom|Genet, 2013, 3(10): 1707–1715. [51] Christian M, Qi YP, Zhang Y, Voytas DF. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases (TALENs). G3: Genes|Genomes| Genetics, 2013, 3(10): 1697–1705. [52] Shan QW, Wang YP, Chen KL, Liang Z, Li J, Zhang Y, Zhang K, Liu JX, Voytas DF, Zheng XL, Zhang Y, Gao CX. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant, 2013, 6(4): 1365–1368. [53] Zhou HB, Liu B, Weeks DP, Spalding MH, Yang B. Large chromosomal deletions and heritable small gen?etic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res, 2014, 42(17): 10903–10914. [54] Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ. A CRISPR/Cas9 toolkit for mul?tiplex genome editing in plants. BMC Plant Biol, 2014, 14: 327. [55] Xie KB, Minkenberg B, Yang YN. Boosting CRISPR/ Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA, 2015, 112(11): 3570–3575. [56] Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR/Cas9 system. Science, 2013, 343(6166): 80–84. [57] Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F. Genome-scale CRISPR-Cas9 knockout screen?ing in human cells. Science, 2013, 343(6166): 84–87. [58] Zhou YX, Zhu SY, Cai CZ, Yuan PF, Li CM, Huang YY, Wei WS. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature, 2014, 509(7501): 487–491. [59] Findlay GM, Boyle EA, Hause RJ, Klein JC, Shendure J. Saturation editing of genomic regions by multiplex hom?ology-directed repair. Nature, 2014, 513(7516): 120–123. [60] Xie F, Ye L, Chang JC, Beyer AI, Wang JM, Muench MO, Kan YW. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res, 2014, 24(9): 1526–1533. [61] Baltes NJ, Voytas DF. Enabling plant synthetic biology through genome engineering. Trends Biotechnol, 2015, 33(2): 120–131. [62] de Lange O, Binder A, Lahaye T. From dead leaf, to new life: TAL effectors as tools for synthetic biology. Plant J, 2014, 78(5): 753–771. [63] Sanchez JP, Ullman C, Moore M, Choo Y, Chua NH. Regulation of gene expression in Arabidopsis thaliana by artificial zinc finger chimeras. Plant Cell Physiol, 2002, 43(12): 1465–1472. [64] Morbitzer R, R?mer P, Boch J, Lahaye T. Regulation of selected genome loci using de novo-engineered tran?scription activator-like effector (TALE)-type transcrip?tion factors. Proc Natl Acad Sci USA, 2010, 107(50): 21617–21622. [65] Liu WS, Rudis MR, Peng YH, Mazarei M, Millwood RJ, Yang JP, Xu WZ, Chesnut JD, Stewart CN. Synthetic TAL effectors for targeted enhancement of transgene expression in plants. Plant Biotechnol J, 2013, 12(4): 436–446. [66] Baazim H. RNA-guided transcriptional regulation in plants via dCas9 chimeric proteins. Bioscience, 2014. http://hdl.handle.net/10754/316715. [67] Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 2014, 159(3): 635–646. [68] Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gooten?berg JS, Nishimasu H, Nureki O, Zhang F. Genome-scale transcriptional activation by an engineered CRISPR- Cas9 complex. Nature, 2014, 517(7536): 583–588. [69] Mahfouz MM, Li LX, Piatek M, Fang XY, Mansour H, Bangarusamy D, Zhu JK. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol Biol, 2012, 78(3): 311–321. [70] Zhang ZH, Wu E, Qian ZJ, Wu WS. A multicolor panel of TALE-KRAB based transcriptional repressor vectors enabling knockdown of multiple gene targets. Sci Rep, 2014, 4: 7338. [71] Gilbert LA, Larson MH, Morsut L, Liu ZR, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2): 442–451. [72] Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La RM, Tsai JC, Weissman JS, Dueber JE, Qi LS, Lim WA. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 2015, 160(1–2): 339–350. [73] Meister GE, Chandrasegaran S, Ostermeier M. Heter?odimeric DNA methyltransferases as a platform for crea?ting designer zinc finger methyltransferases for targeted DNA methylation in cells. Nucleic Acids Res, 2010, 38(5): 1749–1759. [74] Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, Bernstein BE. Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol, 2013, 31(12): 1133–1136. [75] Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F. Optical control of mammalian endogenous transcription and epigenetic states. Nature, 2013, 500(7463): 472–476. [76] Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Sander JD, Reyon D, Wilkinson MF, Joung JK. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol, 2013, 31(12): 1137–1142. [77] O' Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature, 2014, 516(7530): 263–266. [78] Zebec Z, Manica A, Zhang J, White MF, Schleper C. CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus. Nucleic Acids Res, 2014, 42(8): 5280–5288. [79] Tamulaitis G, Kazlauskiene M, Manakova E, Venclovas ?, Nwokeoji AO, Dickman MJ, Horvath P, Siksnys V. Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol Cell, 2014, 56(4): 506–517. [80] Staals RHJ, Zhu YF, Taylor DW, Kornfeld JE, Sharma K, Barendregt A, Koehorst JJ, Vlot M, Neupane N, Urlaub H, Heck AJ, Nogales E, Doudna JA, Shinkai A, van der Oost J. RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol Cell, 2014, 56(4): 518–530. [81] Yagi Y, Nakamura T, Small I. The potential for manipulating RNA with pentatricopeptide repeat proteins. Plant J, 2014, 78(5): 772–782. [82] Ramakrishna S, Kim YH, Kim H. Stability of zinc finger nuclease protein is enhanced by the proteasome inhibitor MG132. PLoS One, 2013, 8(1): e54282. [83] Certo MT, Gwiazda KS, Kuhar R, Sather B, Curinga G, Mandt T, Brault M, Lambert AR, Baxter SK, Jacoby K, Ryu BY, Kiem HP, Gouble A, Paques F, Rawlings DJ, Scharenberg AM. Coupling endonucleases with DNA end-processing enzymes to drive gene disruption. Nat Methods, 2012, 9(10): 973–975. [84] Miller JC, Tan SY, Qiao GJ, Barlow KA, Wang JB, Xia DF, Meng XD, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 2011, 29(2): 143–148. [85] Deng D, Yin P, Yan CY, Pan XJ, Gong XQ, Qi SQ, Xie T, Mahfouz M, Zhu JK, Yan N, Shi YG. Recognition of methylated DNA by TAL effectors. Cell Res, 2012, 22(10): 1502–1504. [86] Valton J, Dupuy A, Daboussi F, Thomas S, Maréchal A, Macmaster R, Melliand K, Juillerat A, Duchateau P. Overcoming Transcription Activator-like Effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem, 2012, 287(46): 38427–38432. [87] Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE. Rational design of highly active sgRNAs for CRISPR- Cas9-mediated gene inactivation. Nat Biotechnol, 2014, 32(12): 1262–1267. [88] Ren XJ, Yang ZH, Xu J, Sun J, Mao DC, Hu YH, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu LP, Ji JY, Li JB, Ni JQ. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep, 2014, 9(3): 1151–1162. [89] Qi YP, Zhang Y, Zhang F, Baller JA, Cleland SC, Ryu Y, Starker CG, Voytas DF. Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res, 2013, 23(3): 547–554. [90] Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang LH, Church GM. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol, 2013, 31(9): 833–838. [91] Kwon YI, Abe K, Osakabe K, Endo M, Nishizawa-Yokoi A, Saika H, Shimada H, Toki S. Overexpression of OsRecQl4 and/or OsExo1 enhances DSB-induced hom?ol?ogous recombination in rice. Plant Cell Physiol, 2012, 53(12): 2142–2152. [92] Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by con?trolled timing of CRISPR/Cas9 delivery. eLife, 2014, 3: e04766. [93] Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF. DNA replicons for plant genome engineering. Plant Cell, 2014, 26(1): 151–163. [94] Byrne SM, Ortiz L, Mali P, Aach J, Church GM. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res, 2015, 43(3): e21. [95] Shin J, Chen JK, Solnica-Krezel L. Efficient homologous recombination-mediated genome engineering in zeb?rafish using TALE nucleases. Development, 2014, 141(19): 3807–3818. [96] Fauser F, Roth N, Pacher M, Ilg G, Sánchez-Fernández R, Biesgen C, Puchta H. In planta gene targeting. Proc Natl Acad Sci USA, 2012, 109(19): 7535–7540. [97] Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordonez A, Di Santo JP, Lomas DA, Bradley A, Vallier L. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature, 2011, 478(7369): 391–394. [98] Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He CX, Wang Y, Brodsky RA, Zhang K, Cheng LZ, Ye ZH. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 2014, 15(1): 12–13. [99] Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang JB, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods, 2011, 8(1): 74–79. [100] Fu YF, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 2014, 32(3): 279–284. [101] Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, Liu DR. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods, 2014, 11(4): 429–435. [102] Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods, 2012, 9(8): 805–807. [103] Cai YJ, Bak RO, Mikkelsen JG, Golub T. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. eLife, 2014, 3: e01911. [104] Guilinger JP, Thompson DB, Liu DR. Fusion of cat?alytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol, 2014, 32(6): 577–582. [105] Ledford H. US regulation misses some GM crops. Nature, 2013, 500(7463): 389–390. [106] Jones HD. Regulatory uncertainty over genome editing. Nat Plants, 2015, 1: 14011. [107] Li L, Piatek M, Atef A, Piatek A, Wibowo A, Fang X, Sabir J, Zhu JK, Mahfouz M. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol, 2012, 78(4–5): 407–416. [108] Johnson RA, Gurevich V, Levy AA. A rapid assay to quantify the cleavage efficiency of custom-designed nucleases in planta. Plant Mol Biol, 2013, 82(3): 207–221. [109] Beurdeley M, Bietz F, Li J, Thomas S, Stoddard T, Juillerat A, Zhang F, Voytas DF, Duchateau P, Silva GH. Compact designer TALENs for efficient genome engineering. Nat Commun, 2013, 4: 1762. [110] Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol, 2013, 83(3): 279–285. [111] Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Joung JK, Voytas DF, Stupar RM. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol, 2011, 156(2): 466–473. [112] Gurushidze M, Hensel G, Hiekel S, Schedel S, Valkov V, Kumlehn J. True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS One, 2014, 9(3): e92046. [113] Liang Z, Zhang K, Chen KL, Gao CX. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genom, 2014, 41(2): 63–68. [114] Lor VS, Starker CG, Voytas DF, Weiss D, Olszewski NE. Targeted mutagenesis of the tomato PROCERA gene using TALENs. Plant Physiol, 2014, 166(3): 1288–1291. [115] Jiang WZ, Yang B, Weeks DP. Efficient CRISPR/ Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS One, 2014, 9(6): e99225. [116] Hyun Y, Kim J, Cho SW, Choi Y, Kim JS, Coupland G. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta, 2015, 241(1): 271–284. [117] Schiml S, Fauser F, Puchta H. The CRISPR/Cas sys?tem can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J, 2014, 80(6): 1139–1150. [118] Mao YF, Zhang H, Xu NF, Zhang BT, Gao F, Zhu JK. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant, 2013, 6(6): 2008–2011. [119] Jiang WZ, Zhou HB, Bi HH, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res, 2013, 41(20): e188. [120] Gao JP, Wang GH, Ma SY, Xie XD, Wu XW, Zhang XT, Wu YQ, Zhao P, Xia QY. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol, 2015, 87(1–2): 99–110. [121] Upadhyay SK, Kumar J, Alok A, Tuli R. RNA guided genome editing for target gene mutations in wheat. G3: Genes|Genom|Genet, 2013, 3(12): 2233–2238. [122] Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I, Kohchi T. CRISPR/Cas9 mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol, 2014, 55(3): 475–481. [123] Jia HG, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One, 2014, 9(4): e93806. [124] Brooks C, Nekrasov V, Lippman ZB, Van Eck J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindro?mic repeats/CRISPR-associated9 system. Plant Physiol, 2014, 166(3): 1292–1297. [125] Weinthal DM, Taylor RA, Tzfira T. Nonhomologous end joining-mediated gene replacement in plant cells. Plant Physiol, 2013, 162(1): 390–400. [126] de Pater S, Pinas JE, Hooykaas PJJ, van der Zaal BJ. ZFN-mediated gene targeting of the Arabidopsis protop?orphyrinogen oxidase gene through Agrobacterium- mediated floral dip transformation. Plant Biotechnol J, 2013, 11(4): 510–515. [127] Cai CQ, Doyon Y, Ainley WM, Miller JC, DeKelver RC, Moehle EA, Rock JM, Rebar EJ, Collingwood TN, Rubin-Wilson B, Gregory PD, Urnov FD, Petolino JF. Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol, 2009, 69(6): 699–709. [128] Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R, Corbin DR, Miles RR, Arnold NL, Strange TL, Simpson MA, Cao Z, Carroll C, Pawelczak KS, Blue R, West K, Rowland LM, Perkins D, Samuel P, Dewes CM, Shen L, Sriram S, Evans SL, Rebar EJ, Zhang L, Gregory PD, Urnov FD, Webb SR, Petolino JF. Trait stacking via targeted genome editing. Plant Biotechnol J, 2013, 11(9): 1126–1134. |
[1] | 郑晓飞,黄海燕,吴强. 染色质架构蛋白CTCF调控UGT1基因簇的表达[J]. 遗传, 2019, 41(6): 509-523. |
[2] | 王珏, 黄娟, 许蕊. 利用CRISPR/Cas9和piggyBac实现果蝇基因组无缝编辑[J]. 遗传, 2019, 41(5): 422-429. |
[3] | 张楷, 刘蔚, 刘小凤, 陈瑶生, 刘小红, 何祖勇. 利用CRISPR/Cas9系统构建人HPRT1基因定点突变细胞株[J]. 遗传, 2019, 41(10): 939-949. |
[4] | 李帆, 余蓉培, 孙丹, 王继华, 李绅崇, 阮继伟, 单芹丽, 陆平利, 汪国鲜. 抑制植物减数分裂重组的分子机理[J]. 遗传, 2019, 41(1): 52-65. |
[5] | 刘恒, 李东明, 朱兰玉, 赖乐锦, 闫婉云, 陆玉双, 韦伊, 黄月琪, 方媚, 苏元港, 杨芳, 舒伟. 利用CRISPR/Cas9敲除人源细胞系中LMNA基因的研究[J]. 遗传, 2019, 41(1): 66-75. |
[6] | 任云晓, 肖茹丹, 娄晓敏, 方向东. 基因编辑技术及其在基因治疗中的应用[J]. 遗传, 2019, 41(1): 18-27. |
[7] | 全绒, 李国玲, 莫健新, 钟翠丽, 李紫聪, 顾婷, 郑恩琴, 刘德武, 蔡更元, 吴珍芳, 张献伟. RNA干扰猪NHEJ通路修复因子对HR效率的影响[J]. 遗传, 2018, 40(9): 749-757. |
[8] | 张桂珊, 杨勇, 张灵敏, 戴宪华. 机器学习方法在CRISPR/Cas9系统中的应用[J]. 遗传, 2018, 40(9): 704-723. |
[9] | 刘海龙, 谌阳, 高杨, 周玲, 韩晓松, 赵长志, 杨高娟, 陈毅龙, 杨慧, 谢胜松. 靶向miRNA前体不同类型sgRNA的丰度及特异性评估[J]. 遗传, 2018, 40(7): 561-571. |
[10] | 唐浚博, 曹浩伟, 许蕊, 张丹丹, 黄娟. 果蝇睾丸基因敲除突变体的构建及表型分析[J]. 遗传, 2018, 40(6): 478-487. |
[11] | 李慧卿, 陈超, 陈冉冉, 宋雪薇, 李佶娜, 朱延明, 丁晓东. 利用CRISPR/Cas9双基因敲除系统初步解析大豆GmSnRK1.1和GmSnRK1.2对ABA及碱胁迫的响应[J]. 遗传, 2018, 40(6): 496-507. |
[12] | 梁彩娇, 孟繁梅, 艾云灿. 基于CRISPR/Cas系统的噬菌体基因组编辑[J]. 遗传, 2018, 40(5): 378-389. |
[13] | 童晓玲,方春燕,盖停停,石津,鲁成,代方银. CRISPR/Cas9系统在昆虫中的应用[J]. 遗传, 2018, 40(4): 266-278. |
[14] | 谢晶, 范辰, 张景龙, 张仕强. Ash2l-1/Ash2l-2在小鼠胚胎干细胞中的表达特异性及互补效应[J]. 遗传, 2018, 40(3): 237-249. |
[15] | 刘佳伟,洪涛,秦鑫,梁英民,张萍. β-血红蛋白病基因组编辑治疗的研究进展[J]. 遗传, 2018, 40(2): 95-103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: