遗传 ›› 2022, Vol. 44 ›› Issue (5): 398-413.doi: 10.16288/j.yczz.22-016
收稿日期:
2022-01-17
修回日期:
2022-03-31
出版日期:
2022-05-20
发布日期:
2022-04-12
通讯作者:
王应祥
E-mail:21110700065@m.fudan.edu.cn;yx_wang@fudan.edu.cn
作者简介:
郭雨萱,在读博士研究生,专业方向:分子细胞生物学。E-mail: 基金资助:
Yuxuan Guo1(), Shunping Yan2, Yingxiang Wang1()
Received:
2022-01-17
Revised:
2022-03-31
Online:
2022-05-20
Published:
2022-04-12
Contact:
Wang Yingxiang
E-mail:21110700065@m.fudan.edu.cn;yx_wang@fudan.edu.cn
Supported by:
摘要:
减数分裂(meiosis)是有性生殖细胞中发生的特殊分裂方式,在这个过程中DNA复制一次,细胞核分裂两次,最终产生单倍体的配子。雌雄配子融合后基因组又恢复到二倍体水平,不仅保证了有性生殖过程中世代间基因组的稳定性,还导致后代的遗传多样性。减数分裂同源重组(homologous recombination, HR)是其前期I的核心事件之一,它不仅保证了后续同源染色体的正确分离,而且允许同源染色体之间遗传信息发生交换,增加了后代的遗传多样性。RAD51 (RADiation sensitive 51)和DMC1 (disruption Meiotic cDNA 1)是HR过程中必需的重组酶,二者有一定的共性和特性。本文从起源、进化、结构和功能等方面总结并比较了它们间的保守和分化,并对未来的研究方向提出了展望,为进一步深入研究减数分裂的重组机制提供了借鉴。
郭雨萱, 严顺平, 王应祥. 重组酶RAD51和DMC1功能保守和分化研究进展[J]. 遗传, 2022, 44(5): 398-413.
Yuxuan Guo, Shunping Yan, Yingxiang Wang. Recent advances in functional conservation and divergence of recombinase RAD51 and DMC1[J]. Hereditas(Beijing), 2022, 44(5): 398-413.
图3
代表物种RAD51和DMC1结构域的定位和序列 A:RAD51和DMC1蛋白结构域定位;B:代表物种RAD51的FXXA、Walker A、PAP和Walker B与DMC1的Walker A和Walker B同源序列对比;C:在代表物种中RAD51和DMC1的Loop1和Loop2同源序列对比;D:B图中PAP motif的放大图。At:拟南芥;Hs:人;Mm:小鼠;Sc:酿酒酵母;Sp:裂殖酵母。图中拟南芥对应的TAIR号为RAD51:AT5G20850.1,DMC1:AT3G22880.1。人、小鼠和酵母的蛋白序列在https://www.uniprot.org/网站下载,序列号分别为Hs RAD51 (Q06609)、Mm RAD51 (Q08297)、Sc RAD51 (P25454)、Hs DMC1 (Q14565)、Mm DMC1 (Q61880)和Sc DMC1 (P25453)。"
图4
人和拟南芥RAD51和DMC1晶体结构 A:人RAD51晶体结构;B:拟南芥RAD51晶体结构;C:人DMC1晶体结构;D:拟南芥DMC1晶体结构。图中紫色代表Walker A结构,橙色代表Walker B结构,绿色代表Loop1 (L1)结构,蓝色代表Loop2 (L2)结构。蓝色框代表Loop1中关键性谱系特异性氨基酸残基,红色框代表Loop2中关键性谱系特异性氨基酸残基。影响RAD51和DMC1对碱基错配耐受性的关键性残基分别用蓝色和红色标出。图中所用模型来自 AlphaFold 蛋白质结构数据库(Protein Structure Database) https://alphafold.ebi.ac.uk/,结构展示软件为PyMOL (version 2.5)。"
图5
重组酶RAD51和DMC1在植物中参与减数分裂重组的机制 蓝色和红色线条分别描绘了两条父母亲本双链DNA。重组酶DMC1和RAD51结合到ssDNA上由BRCA2和DSS1介导,RAD51C和XRCC3与RAD51结合可能改变了RAD51结构有助于RAD51的装载。SMC5/6复合物与RAD51和DMC1三者之间结合相互平衡,RAD51能抑制SMC5/6复合物与DMC1的结合,有助于DMC1进行同源重组。而FIGL1-FLIP与BRCA2拮抗作用,抑制RAD51和DMC1的装载。Hop2-Mnd1与RAD51和DMC1结合促进链交换。RAD54不仅参与了促进链交换同时也参与RAD51在dsDNA上的去除,但DMC1的降解机制还有待探索。"
[1] |
Osman K, Higgins JD, Sanchez-Moran E, Armstrong SJ, Franklin FC. Pathways to meiotic recombination in Arabidopsis thaliana. New Phytol, 2011, 190(3):523-544.
doi: 10.1111/j.1469-8137.2011.03665.x pmid: 21366595 |
[2] |
Kuo P, Da Ines O, Lambing C. Rewiring meiosis for crop improvement. Front Plant Sci, 2021, 12:708948.
doi: 10.3389/fpls.2021.708948 |
[3] |
Taagen E, Bogdanove AJ, Sorrells ME. Counting on crossovers: controlled recombination for plant breeding. Trends Plant Sci, 2020, 25(5):455-465.
doi: S1360-1385(19)30342-5 pmid: 31959421 |
[4] |
Shim EY, Chung WH, Nicolette ML, Zhang Y, Davis M, Zhu Z, Paull TT, Ira G, Lee SE. Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J, 2010, 29(19):3370-3380.
doi: 10.1038/emboj.2010.219 |
[5] |
Ghosal G, Muniyappa K. The characterization of saccharomyces cerevisiae Mre11/Rad50/Xrs2 complex reveals that Rad50 negatively regulates Mre11 endonucleolytic but not the exonucleolytic activity. J Mol Biol, 2007, 372(4):864-882.
doi: S0022-2836(07)00940-0 pmid: 17698079 |
[6] |
Waterworth WM, Altun C, Armstrong SJ, Roberts N, Dean PJ, Young K, Weil CF, Bray CM, West CE. NBS1 is involved in DNA repair and plays a synergistic role with ATM in mediating meiotic homologous recombination in plants. Plant J, 2007, 52(1):41-52.
pmid: 17672843 |
[7] |
Puizina J, Siroky J, Mokros P, Schweizer D, Riha K. Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11- dependent genome fragmentation during meiosis. Plant Cell, 2004, 16(8):1968-1978.
pmid: 15258261 |
[8] |
Wang YX, Copenhaver GP. Meiotic recombination: mixing it up in plants. Annu Rev Plant Biol, 2018, 69:577-609.
doi: 10.1146/annurev-arplant-042817-040431 |
[9] |
Ma CJ, Gibb B, Kwon Y, Sung P, Greene EC. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. Nucleic Acids Res, 2017, 45(2):749-761.
doi: 10.1093/nar/gkw1125 |
[10] |
Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu JM, Christ N, Liu XG, Jasin M, Couch FJ, Livingston DM. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell, 2006, 22(6):719-729.
doi: 10.1016/j.molcel.2006.05.022 |
[11] |
Vasianovich Y, Altmannova V, Kotenko O, Newton MD, Krejci L, Makovets S. Unloading of homologous recombination factors is required for restoring double- stranded DNA at damage repair loci. EMBO J, 2017, 36(2):213-231.
doi: 10.15252/embj.201694628 pmid: 27932447 |
[12] |
Lambing C, Franklin FCH, Wang CR. Understanding and manipulating meiotic recombination in plants. Plant Physiol, 2017, 173(3):1530-1542.
doi: 10.1104/pp.16.01530 |
[13] | Li X, Zhang J, Huang JY, Xu J, Chen ZY, Copenhaver GP, Wang YX. Regulation of interference-sensitive crossover distribution ensures crossover assurance in Arabidopsis. Proc Natl Acad Sci USA, 2021, 118(47): e2107543118. |
[14] |
Cromie GA, Hyppa RW, Taylor AF, Zakharyevich K, Hunter N, Smith GR. Single holliday junctions are intermediates of meiotic recombination. Cell, 2006, 127(6):1167-1178.
doi: 10.1016/j.cell.2006.09.050 |
[15] |
Bonilla B, Hengel SR, Grundy MK, Bernstein KA. RAD51 gene family structure and function. Annu Rev Genet, 2020, 54:25-46.
doi: 10.1146/annurev-genet-021920-092410 |
[16] |
Jiang S, Lin T, Xie QJ, Wang LJ. Network analysis of RAD51 proteins in Metazoa and the evolutionary relationships with their archaeal homologs. Front Genet, 2018, 9:383.
doi: 10.3389/fgene.2018.00383 pmid: 30319685 |
[17] |
Xu Z, Zhang JX, Xu M, Ji W, Yu MM, Tao YJ, Gong ZY, Gu MH, Yu HX. Rice RAD51 paralogs play essential roles in somatic homologous recombination for DNA repair. Plant J, 2018, 95(2):282-295.
doi: 10.1111/tpj.13949 |
[18] |
Su H, Cheng ZH, Huang JY, Lin J, Copenhaver GP, Ma H, Wang YX. Arabidopsis RAD51, RAD51C and XRCC3 proteins form a complex and facilitate RAD51 localization on chromosomes for meiotic recombination. PLoS Genet, 2017, 13(5):e1006827
doi: 10.1371/journal.pgen.1006827 |
[19] |
Da Ines O, Degroote F, Amiard S, Goubely C, Gallego ME, White CI. Effects of XRCC2 and RAD51B mutations on somatic and meiotic recombination in Arabidopsis thaliana. Plant J, 2013, 74(6):959-970.
doi: 10.1111/tpj.12182 |
[20] | Da Ines O, Abe K, Goubely C, Gallego ME, White CI. Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms inArabidopsis thaliana. PLoS Genet, 2012, 8(4):e1002636. |
[21] |
Pradillo M, López E, Linacero R, Romero C, Cuñado N, Sánchez-Morán E, Santos JL. Together yes, but not coupled: new insights into the roles of RAD51 and DMC1 in plant meiotic recombination. Plant J, 2012, 69(6):921-933.
doi: 10.1111/j.1365-313X.2011.04845.x |
[22] |
Hong S, Sung YJ, Yu M, Lee M, Kleckner N, Kim KP. The logic and mechanism of homologous recombination partner choice. Mol Cell, 2013, 51(4):440-453.
doi: 10.1016/j.molcel.2013.08.008 |
[23] | Da Ines O, Degroote F, Goubely C, Amiard S, Gallego ME, White CI. Meiotic recombination in Arabidopsis is catalysed by DMC1, with RAD51 playing a supporting role. PLoS Genet, 2013, 9(9): e1003787. |
[24] |
Lin ZG, Kong HZ, Nei M, Ma H. Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer. Proc Natl Acad Sci USA, 2006, 103(27):10328-10333
doi: 10.1073/pnas.0604232103 |
[25] |
Prentiss M, Prévost C, Danilowicz C. Structure/function relationships in RecA protein-mediated homology recognition and strand exchange. Crit Rev Biochem Mol Biol, 2015, 50(6):453-476.
doi: 10.3109/10409238.2015.1092943 |
[26] |
Chintapalli SV, Bhardwaj G, Babu J, Hadjiyianni L, Hong YJ, Todd GK, Boosalis CA, Zhang ZH, Zhou XF, Ma H, Anishkin A, van Rossum DB, Patterson RL. Reevaluation of the evolutionary events within recA/ RAD51 phylogeny. BMC Genomics, 2013, 14:240.
doi: 10.1186/1471-2164-14-240 pmid: 23574621 |
[27] | Ramesh MA, Malik SB, Logsdon JM,Jr. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol, 2005, 15(2):185-191. |
[28] |
Kurumizaka H, Aihara H, Kagawa W, Shibata T, Yokoyama S. Human Rad51 amino acid residues required for Rad52 binding. J Mol Biol, 1999, 291(3):537-548.
pmid: 10448035 |
[29] |
Afshar N, Argunhan B, Palihati M, Taniguchi G, Tsubouchi H, Iwasaki H. A novel motif of Rad51 serves as an interaction hub for recombination auxiliary factors. Elife, 2021, 10:e64131.
doi: 10.7554/eLife.64131 |
[30] |
Scott DE, Marsh M, Blundell TL, Abell C, Hyvönen M. Structure-activity relationship of the peptide binding- motif mediating the BRCA2:RAD51 protein-protein interaction. FEBS Lett, 2016, 590(8):1094-1102.
doi: 10.1002/1873-3468.12139 |
[31] |
Lee JY, Terakawa T, Qi Z, Steinfeld JB, Redding S, Kwon Y, Gaines WA, Zhao WX, Sung P, Greene EC. DNA recombination. base triplet stepping by the Rad51/ RecA family of recombinases. Science, 2015, 349(6251):977-981.
doi: 10.1126/science.aab2666 |
[32] |
Qi Z, Redding S, Lee JY, Gibb B, Kwon Y, Niu H, Gaines WA, Sung P, Greene EC. DNA sequence alignment by microhomology sampling during homologous recombination. Cell, 2015, 160(5):856-869.
doi: 10.1016/j.cell.2015.01.029 |
[33] |
Lee JY, Steinfeld JB, Qi Z, Kwon Y, Sung P, Greene EC. Sequence imperfections and base triplet recognition by the Rad51/RecA family of recombinases. J Biol Chem, 2017, 292(26):11125-11135.
doi: 10.1074/jbc.M117.787614 |
[34] | Li WC, Lee CY, Lan WH, Woo TT, Liu HC, Yeh HY, Chang HY, Chuang YC, Chen CY, Chuang CN, Chen CL, Hsueh YP, Li HW, Chi P, Wang TF. Trichoderma reesei Rad51 tolerates mismatches in hybrid meiosis with diverse genome sequences. Proc Natl Acad Sci USA, 2021, 118(8): e2007192118. |
[35] |
Xu JF, Zhao LY, Peng SJ, Chu HY, Liang R, Tian M, Connell PP, Li GH, Chen CL, Wang HW. Mechanisms of distinctive mismatch tolerance between Rad51 and Dmc1 in homologous recombination. Nucleic Acids Res, 2021, 49(22):13135-13149.
doi: 10.1093/nar/gkab1141 |
[36] |
Luo SC, Yeh HY, Lan WH, Wu YM, Yang CH, Chang HY, Su GC, Lee CY, Wu WJ, Li HW, Ho MC, Chi P, Tsai MD. Identification of fidelity-governing factors in human recombinases DMC1 and RAD51 from cryo-EM structures. Nat Commun, 2021, 12(1):115.
doi: 10.1038/s41467-020-20258-1 |
[37] |
Steinfeld JB, Beláň O, Kwon Y, Terakawa T, Al-Zain A, Smith MJ, Crickard JB, Qi Z, Zhao WX, Rothstein R, Symington LS, Sung P, Boulton SJ, Greene EC. Defining the influence of Rad51 and Dmc1 lineage-specific amino acids on genetic recombination. Genes Dev, 2019, 33(17-18):1191-1207.
doi: 10.1101/gad.328062.119 |
[38] |
Bugreev DV, Pezza RJ, Mazina OM, Voloshin ON, Camerini-Otero RD, Mazin AV. The resistance of DMC1 D-loops to dissociation may account for the DMC1 requirement in meiosis. Nat Struct Mol Biol, 2011, 18(1):56-60.
doi: 10.1038/nsmb.1946 pmid: 21151113 |
[39] |
Lorenz A. Modulation of meiotic homologous recombination by DNA helicases. Yeast, 2017, 34(5):195-203.
doi: 10.1002/yea.3227 |
[40] |
Branzei D, Szakal B. Building up and breaking down: mechanisms controlling recombination during replication. Crit Rev Biochem Mol Biol, 2017, 52(4):381-394.
doi: 10.1080/10409238.2017.1304355 |
[41] |
Spell RM, Jinks-Robertson S. Examination of the roles of Sgs1 and Srs2 helicases in the enforcement of recombination fidelity inSaccharomyces cerevisiae. Genetics, 2004, 168(4):1855-1865.
doi: 10.1534/genetics.104.032771 |
[42] | Crickard JB, Kaniecki K, Kwon Y, Sung P, Greene EC. Meiosis-specific recombinase Dmc1 is a potent inhibitor of the Srs2 antirecombinase. Proc Natl Acad Sci USA, 2018, 115(43):E10041-E10048. |
[43] |
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res, 2022, 50(D1):D439-D444.
doi: 10.1093/nar/gkab1061 |
[44] |
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873):583-589.
doi: 10.1038/s41586-021-03819-2 |
[45] |
Kinebuchi T, Kagawa W, Enomoto R, Tanaka K, Miyagawa K, Shibata T, Kurumizaka H, Yokoyama S. Structural basis for octameric ring formation and DNA interaction of the human homologous-pairing protein Dmc1. Mol Cell, 2004, 14(3):363-374.
pmid: 15125839 |
[46] |
Shin DS, Pellegrini L, Daniels DS, Yelent B, Craig L, Bates D, Yu DS, Shivji MK, Hitomi C, Arvai AS, Volkmann N, Tsuruta H, Blundell TL, Venkitaraman AR, Tainer JA. Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. EMBO J, 2003, 22(17):4566-4576.
doi: 10.1093/emboj/cdg429 |
[47] |
Sauvageau S, Stasiak AZ, Banville I, Ploquin M, Stasiak A, Masson JY. Fission yeast rad51 and dmc1, two efficient DNA recombinases forming helical nucleoprotein filaments. Mol Cell Biol, 2005, 25(11):4377-4387.
pmid: 15899844 |
[48] |
Xu JF, Zhao LY, Xu YY, Zhao WX, Sung P, Wang HW. Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange. Nat Struct Mol Biol, 2017, 24(1):40-46.
doi: 10.1038/nsmb.3336 |
[49] | Short JM, Liu Y, Chen SX, Soni N, Madhusudhan MS, Shivji MKK, Venkitaraman AR. High-resolution structure of the presynaptic RAD51 filament on single-stranded DNA by electron cryo-microscopy. Nucleic Acids Res, 2016, 44(19):9017-9030. |
[50] |
Lan WH, Lin SY, Kao CY, Chang WH, Yeh HY, Chang HY, Chi P, Li HW. Rad51 facilitates filament assembly of meiosis-specific Dmc1 recombinase. Proc Natl Acad Sci USA, 2020, 117(21):11257-11264.
doi: 10.1073/pnas.1920368117 |
[51] |
Kobayashi W, Takaku M, Machida S, Tachiwana H, Maehara K, Ohkawa Y, Kurumizaka H. Chromatin architecture may dictate the target site for DMC1, but not for RAD51, during homologous pairing. Sci Rep, 2016, 6:24228.
doi: 10.1038/srep24228 pmid: 27052786 |
[52] |
Hyppa RW, Smith GR. Crossover invariance determined by partner choice for meiotic DNA break repair. Cell, 2010, 142(2):243-255.
doi: 10.1016/j.cell.2010.05.041 |
[53] |
Bishop DK, Park D, Xu L, Kleckner N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell, 1992, 69(3):439-456.
pmid: 1581960 |
[54] |
Sehorn MG, Sigurdsson S, Bussen W, Unger VM, Sung P. Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature, 2004, 429(6990):433-437.
doi: 10.1038/nature02563 |
[55] | Heyer WD. Regulation of recombination and genomic maintenance. Cold Spring Harb Perspect Biol, 2015, 7(8): a016501. |
[56] |
van der Heijden T, Modesti M, Hage S, Kanaar R, Wyman C, Dekker C. Homologous recombination in real time: DNA strand exchange by RecA. Mol Cell, 2008, 30(4):530-538.
doi: 10.1016/j.molcel.2008.03.010 pmid: 18498754 |
[57] |
Wiktor J, Gynnå AH, Leroy P, Larsson J, Coceano G, Testa I, Elf J. RecA finds homologous DNA by reduced dimensionality search. Nature, 2021, 597(7876):426-429.
doi: 10.1038/s41586-021-03877-6 |
[58] | Brown MS, Grubb J, Zhang AN, Rust MJ, Bishop DK. Small Rad51 and Dmc1 complexes often co-occupy both ends of a meiotic DNA double strand break. PLoS Genet, 2015, 11(12): e1005653. |
[59] |
Crickard JB, Kaniecki K, Kwon Y, Sung P, Greene EC. Spontaneous self-segregation of Rad51 and Dmc1 DNA recombinases within mixed recombinase filaments. J Biol Chem, 2018, 293(11):4191-4200.
doi: 10.1074/jbc.RA117.001143 pmid: 29382724 |
[60] |
Kurzbauer MT, Uanschou C, Chen D, Schlögelhofer P. The recombinases DMC1 and RAD51 are functionally and spatially separated during meiosis in Arabidopsis. Plant Cell, 2012, 24(5):2058-2070.
doi: 10.1105/tpc.112.098459 |
[61] |
Mercier R, Armstrong SJ, Horlow C, Jackson NP, Makaroff CA, Vezon D, Pelletier G, Jones GH, Franklin FCH. The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis. Development, 2003, 130(14):3309-3318.
doi: 10.1242/dev.00550 |
[62] |
Hinch AG, Becker PW, Li T, Moralli D, Zhang G, Bycroft C, Green C, Keeney S, Shi QH, Davies B, Donnelly P. The configuration of RPA, RAD51, DMC1 binding in meiosis reveals the nature of critical recombination intermediates. Mol Cell, 2020, 79(4): 689-701.e610.
doi: 10.1016/j.molcel.2020.06.015 |
[63] | Slotman JA, Paul MW, Carofiglio F, de Gruiter HM, Vergroesen T, Koornneef L, van Cappellen WA, Houtsmuller AB, Baarends WM. Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase. PLoS Genet, 2020, 16(6): e1008595. |
[64] |
Rockmill B, Sym M, Scherthan H, Roeder GS. Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev, 1995, 9(21):2684-2695.
doi: 10.1101/gad.9.21.2684 |
[65] |
Tsubouchi H, Roeder GS. The importance of genetic recombination for fidelity of chromosome pairing in meiosis. Dev Cell, 2003, 5(6):915-925.
pmid: 14667413 |
[66] |
Li WX, Chen CB, Markmann-Mulisch U, Timofejeva L, Schmelzer E, Ma H, Reiss B. The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis. Proc Natl Acad Sci USA, 2004, 101(29):10596-10601.
doi: 10.1073/pnas.0404110101 |
[67] |
Franklin AE, Golubovskaya IN, Bass HW, Cande WZ. Improper chromosome synapsis is associated with elongated RAD51 structures in the maize desynaptic2 mutant. Chromosoma, 2003, 112(1):17-25.
pmid: 12811575 |
[68] | Crismani W, Portemer V, Froger N, Chelysheva L, Horlow C, Vrielynck N, Mercier R. MCM8 is required for a pathway of meiotic double-strand break repair independent of DMC1 in Arabidopsis thaliana. PLoS Genet, 2013, 9(1): e1003165. |
[69] |
Couteau F, Belzile F, Horlow C, Grandjean O, Vezon D, Doutriaux MP. Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant ofArabidopsis. Plant Cell, 1999, 11(9):1623-1634.
pmid: 10488231 |
[70] |
Szurman-Zubrzycka M, Baran B, Stolarek-Januszkiewicz M, Kwaśniewska J, Szarejko I, Gruszka D. The dmc1 mutant allows an insight into the DNA double-strand break repair during meiosis in barley (Hordeum vulgare L.). Front Plant Sci, 2019, 10:761.
doi: 10.3389/fpls.2019.00761 pmid: 31244877 |
[71] |
Pittman DL, Cobb J, Schimenti KJ, Wilson LA, Cooper DM, Brignull E, Handel MA, Schimenti JC. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol Cell, 1998, 1(5):697-705.
pmid: 9660953 |
[72] |
Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, Morita T. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell, 1998, 1(5):707-718.
pmid: 9660954 |
[73] |
Bishop DK. RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell, 1994, 79(6):1081-1092.
pmid: 7528104 |
[74] |
Shinohara A, Gasior S, Ogawa T, Kleckner N, Bishop DK. Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes Cells, 1997, 2(10):615-629.
pmid: 9427283 |
[75] | Singh G, Da Ines O, Gallego ME, White CI. Analysis of the impact of the absence of RAD51 strand exchange activity in Arabidopsis meiosis. PLoS One, 2017, 12(8): e0183006. |
[76] |
Cloud V, Chan YL, Grubb J, Budke B, Bishop DK. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science, 2012, 337(6099):1222-1225.
doi: 10.1126/science.1219379 |
[77] | Brown MS, Bishop DK. DNA strand exchange and RecA homologs in meiosis. Cold Spring Harb Perspect Biol, 2014, 7(1): a016659. |
[78] |
Marsolier-Kergoat MC, Khan MM, Schott J, Zhu X, Llorente B. Mechanistic view and genetic control of DNA recombination during meiosis. Mol Cell, 2018, 70(1): 9-20.e26.
doi: S1097-2765(18)30177-1 pmid: 29625041 |
[79] |
Azumi Y, Liu D, Zhao DZ, Li WX, Wang GF, Hu Y, Ma H. Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein. EMBO J, 2002, 21(12):3081-95.
doi: 10.1093/emboj/cdf285 |
[80] |
Sanchez-Moran E, Santos JL, Jones GH, Franklin FCH. ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes Dev, 2007, 21(17):2220-2233.
doi: 10.1101/gad.439007 |
[81] | De Muyt A, Pereira L, Vezon D, Chelysheva L, Gendrot G, Chambon A, Lainé-Choinard S, Pelletier G, Mercier R, Nogué F, Grelon M. A high throughput genetic screen identifies new early meiotic recombination functions inArabidopsis thaliana. PLoS Genet, 2009, 5(9): e1000654. |
[82] | Ferdous M, Higgins JD, Osman K, Lambing C, Roitinger E, Mechtler K, Armstrong SJ, Perry R, Pradillo M, Cuñado N, Franklin FC. Inter-homolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3. PLoS Genet, 2012, 8(2): e1002507. |
[83] |
Yao Y, Li XJ, Chen WL, Liu H, Mi LM, Ren D, Mo AW, Lu PL. ATM promotes RAD51-mediated meiotic DSB repair by inter-sister-chromatid recombination in Arabidopsis. Front Plant Sci, 2020, 11:839.
doi: 10.3389/fpls.2020.00839 |
[84] |
Argunhan B, Leung WK, Afshar N, Terentyev Y, Subramanian VV, Murayama Y, Hochwagen A, Iwasaki H, Tsubouchi T, Tsubouchi H. Fundamental cell cycle kinases collaborate to ensure timely destruction of the synaptonemal complex during meiosis. EMBO J, 2017, 36(17):2488-2509.
doi: 10.15252/embj.201695895 pmid: 28694245 |
[85] |
Prugar E, Burnett C, Chen XY, Hollingsworth NM. Coordination of double strand break repair and meiotic progression in yeast by a Mek1-Ndt80 negative feedback loop. Genetics, 2017, 206(1):497-512.
doi: 10.1534/genetics.117.199703 |
[86] | Callender TL, Laureau R, Wan LH, Chen XY, Sandhu R, Laljee S, Zhou S, Suhandynata RT, Prugar E, Gaines WA, Kwon Y, Börner GV, Nicolas A, Neiman AM, Hollingsworth NM. Mek1 down regulates Rad51 activity during yeast meiosis by phosphorylation of Hed1. PLoS Genet, 2016, 12(8): e1006226. |
[87] | Lao JP, Cloud V, Huang CC, Grubb J, Thacker D, Lee CY, Dresser ME, Hunter N, Bishop DK. Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation. PLoS Genet, 2013, 9(12): e1003978. |
[88] |
Thorslund T, Esashi F, West SC. Interactions between human BRCA2 protein and the meiosis-specific recombinase DMC1. EMBO J, 2007, 26(12):2915-2922.
doi: 10.1038/sj.emboj.7601739 pmid: 17541404 |
[89] |
Dray E, Siaud N, Dubois E, Doutriaux MP. Interaction between Arabidopsis Brca2 and its partners Rad51, Dmc1, and Dss1. Plant Physiol, 2006, 140(3):1059-1069.
doi: 10.1104/pp.105.075838 |
[90] |
Kumar R, Duhamel M, Coutant E, Ben-Nahia E, Mercier R. Antagonism between BRCA2 and FIGL1 regulates homologous recombination. Nucleic Acids Res, 2019, 47(10):5170-5180.
doi: 10.1093/nar/gkz225 |
[91] | Fernandes JB, Duhamel M, Seguéla-Arnaud M, Froger N, Girard C, Choinard S, Solier V, De Winne N, De Jaeger G, Gevaert K, Andrey P, Grelon M, Guerois R, Kumar R, Mercier R. FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination. PLoS Genet, 2018, 14(4): e1007317. |
[92] |
Nimonkar AV, Dombrowski CC, Siino JS, Stasiak AZ, Stasiak A, Kowalczykowski SC. Saccharomyces cerevisiae Dmc1 and Rad51 proteins preferentially function with Tid1 and Rad54 proteins, respectively, to promote DNA strand invasion during genetic recombination. J Biol Chem, 2012, 287(34):28727-28737.
doi: 10.1074/jbc.M112.373290 pmid: 22761450 |
[93] |
Shah SS, Hartono S, Piazza A, Som V, Wright W, Chédin F, Heyer WD. Rdh54/Tid1 inhibits Rad51- Rad54-mediated D-loop formation and limits D-loop length. Elife, 2020, 9:e59112.
doi: 10.7554/eLife.59112 |
[94] | Hernandez Sanchez-Rebato M, Bouatta AM, Gallego ME, White CI, Da Ines O. RAD54 is essential for RAD51-mediated repair of meiotic DSB in Arabidopsis. PLoS Genet, 2021, 17(5): e1008919. |
[95] |
Mason JM, Dusad K, Wright WD, Grubb J, Budke B, Heyer WD, Connell PP, Weichselbaum RR, Bishop DK. RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells. Nucleic Acids Res, 2015, 43(6):3180-3196.
doi: 10.1093/nar/gkv175 |
[96] |
Renkawitz J, Lademann CA, Jentsch S. Mechanisms and principles of homology search during recombination. Nat Rev Mol Cell Biol, 2014, 15(6):369-383.
doi: 10.1038/nrm3805 |
[97] |
Busygina V, Sehorn MG, Shi IY, Tsubouchi H, Roeder GS, Sung P. Hed1 regulates Rad51-mediated recombination via a novel mechanism. Genes Dev, 2008, 22(6):786-795.
doi: 10.1101/gad.1638708 |
[98] |
Busygina V, Saro D, Williams G, Leung WK, Say AF, Sehorn MG, Sung P, Tsubouchi H. Novel attributes of Hed1 affect dynamics and activity of the Rad51 presynaptic filament during meiotic recombination. J Biol Chem, 2012, 287(2):1566-1575.
doi: 10.1074/jbc.M111.297309 |
[99] |
Vignard J, Siwiec T, Chelysheva L, Vrielynck N, Gonord F, Armstrong SJ, Schlögelhofer P, Mercier R. The interplay of RecA-related proteins and the MND1-HOP2 complex during meiosis in Arabidopsis thaliana. PLoS Genet, 2007, 3(10):1894-1906.
doi: 10.1371/journal.pgen.0030176 pmid: 17937504 |
[100] |
Zhao WX, Sung P. Significance of ligand interactions involving Hop2-Mnd1 and the RAD51 and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis. Nucleic Acids Res, 2015, 43(8):4055-4066.
doi: 10.1093/nar/gkv259 |
[101] |
Hayase A, Takagi M, Miyazaki T, Oshiumi H, Shinohara M, Shinohara A. A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell, 2004, 119(7):927-940.
doi: 10.1016/j.cell.2004.10.031 |
[102] |
Tsubouchi H, Roeder GS. The budding yeast mei5 and sae3 proteins act together with dmc1 during meiotic recombination. Genetics, 2004, 168(3):1219-1230.
pmid: 15579681 |
[103] | Reitz D, Grubb J, Bishop DK. A mutant form of Dmc1 that bypasses the requirement for accessory protein Mei5-Sae3 reveals independent activities of Mei5-Sae3 and Rad51 in Dmc1 filament stability. PLoS Genet, 2019, 15(12): e1008217. |
[104] |
Ferrari SR, Grubb J, Bishop DK. The Mei5-Sae3 protein complex mediates Dmc1 activity in Saccharomyces cerevisiae. J Biol Chem, 2009, 284(18):11766-11770.
doi: 10.1074/jbc.C900023200 pmid: 19270307 |
[105] |
Petukhova GV, Pezza RJ, Vanevski F, Ploquin M, Masson JY, Camerini-Otero RD. The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat Struct Mol Biol, 2005, 12(5):449-453.
pmid: 15834424 |
[106] |
Tsubouchi H, Argunhan B, Ito K, Takahashi M, Iwasaki H. Two auxiliary factors promote Dmc1-driven DNA strand exchange via stepwise mechanisms. Proc Natl Acad Sci USA, 2020, 117(22):12062-12070.
doi: 10.1073/pnas.1917419117 |
[107] |
Murayama Y, Kurokawa Y, Tsutsui Y, Iwasaki H. Dual regulation of Dmc1-driven DNA strand exchange by Swi5-Sfr1 activation and Rad22 inhibition. Genes Dev, 2013, 27(21):2299-2304.
doi: 10.1101/gad.218693.113 |
[108] |
Chen HC, He CP, Wang CY, Wang XP, Ruan FY, Yan JJ, Yin P, Wang YX, Yan SP. RAD51 supports DMC1 by inhibiting the SMC5/6 complex during meiosis. Plant Cell, 2021, 33(8):2869-2882.
doi: 10.1093/plcell/koab136 |
[109] | Hunter N. Meiotic recombination: the essence of heredity. Cold Spring Harb Perspect Biol, 2015, 7(12): a016618. |
[110] |
Woglar A, Villeneuve AM. Dynamic architecture of DNA repair complexes and the synaptonemal complex at sites of meiotic recombination. Cell, 2018, 173(7): 1678-1691.e1616.
doi: 10.1016/j.cell.2018.03.066 |
[111] |
Villeneuve AM, Hillers KJ. Whence meiosis? Cell, 2001, 106(6):647-650.
pmid: 11572770 |
[112] | Gerton JL, Hawley RS. Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat Rev Genet, 2005, 6(6):477-487. |
[113] | An YR, Manuguri SS, Malmström J. Atomic force microscopy of proteins. Methods Mol Biol, 2020, 2073: 247-285. |
[114] |
Peng YH, Qiao HY. The application of single-cell RNA sequencing in mammalian meiosis studies. Front Cell Dev Biol, 2021, 9:673642.
doi: 10.3389/fcell.2021.673642 |
[115] |
Prusicki MA, Keizer EM, van Rosmalen RP, Komaki S, Seifert F, Müller K, Wijnker E, Fleck C, Schnittger A. Live cell imaging of meiosis in Arabidopsis thaliana. Elife, 2019, 8:e42834.
doi: 10.7554/eLife.42834 |
[1] | 吕香江, 郭静, 林戈. TRIP13基因新突变导致卵母细胞成熟阻滞为特征的女性不孕[J]. 遗传, 2023, 45(6): 514-525. |
[2] | 李园园, 郭磊, 韩之明. NEK家族在细胞周期调控中的作用[J]. 遗传, 2021, 43(7): 642-653. |
[3] | 耿喜宁, 芦特, 杜康, 杨珺, 康向阳. 不同基因型毛白杨同源重组变异研究[J]. 遗传, 2021, 43(2): 182-193. |
[4] | 聂辉, 张译文, 李佳宁, 王楠楠, 徐澜. 减数分裂联会复合体异常与不孕不育相关性研究进展[J]. 遗传, 2021, 43(12): 1142-1148. |
[5] | 李帆, 余蓉培, 孙丹, 王继华, 李绅崇, 阮继伟, 单芹丽, 陆平利, 汪国鲜. 抑制植物减数分裂重组的分子机理[J]. 遗传, 2019, 41(1): 52-65. |
[6] | 全绒, 李国玲, 莫健新, 钟翠丽, 李紫聪, 顾婷, 郑恩琴, 刘德武, 蔡更元, 吴珍芳, 张献伟. RNA干扰猪NHEJ通路修复因子对HR效率的影响[J]. 遗传, 2018, 40(9): 749-757. |
[7] | 梁彩娇, 孟繁梅, 艾云灿. 基于CRISPR/Cas系统的噬菌体基因组编辑[J]. 遗传, 2018, 40(5): 378-389. |
[8] | 刘春霞, 耿立召, 许建平. 植物基因组编辑检测方法[J]. 遗传, 2018, 40(12): 1075-1091. |
[9] | 黄敏,杨业然,孙晓艳,张婷,郭彩霞. RAD51调控REV1参与DNA双链断裂修复[J]. 遗传, 2018, 40(11): 1007-1014. |
[10] | 贺燕,谢梦女,余立,任真,朱芳,符淳. 范可尼贫血基因在卵泡发育中的调节作用[J]. 遗传, 2017, 39(6): 469-481. |
[11] | 廖亚平,王春景,梁猛,胡小梅,吴琦. 平衡复杂染色体重排携带者的遗传与生育情况分析[J]. 遗传, 2017, 39(5): 396-412. |
[12] | 李国玲,钟翠丽,莫健新,全绒,吴珍芳,李紫聪,杨化强,张献伟. 动物基因组定点整合转基因技术研究进展[J]. 遗传, 2017, 39(2): 98-109. |
[13] | 王伟, 王玉霜, 黄兰兰, 简子健, 王新华, 刘守仁, 皮文辉. siRNA干扰绵羊胚胎成纤维细胞Lig4基因增加同源重组载体重连修复效率[J]. 遗传, 2016, 38(9): 831-839. |
[14] | 杨献伟,杨瑞馥,崔玉军. 细菌基因组同源重组:量化与鉴定[J]. 遗传, 2016, 38(2): 137-143. |
[15] | 殷利眷,胡斯奇,郭斐. CRISPR-Cas9基因编辑技术在病毒感染疾病治疗中的应用[J]. 遗传, 2015, 37(5): 412-418. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: