[1] Mallory AC, Vaucheret H. Functions of microRNAs and related small RNAs in plants. Nat Genet , 2006, 38(Supp. l): S31-S36. [2] Voinnet O. Origin, biogenesis, and activity of plant mcroRNAs. Cell , 2009, 136(4): 669-687. [3] Cuperus JT, Fahlgren N, Carrington JC. Evolution and functional diversification of MIRNA genes. Plant Cell , 2011, 23(2): 431-442. [4] Zhu HL, Hu FQ, Wang RH, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang XR. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell , 2011, 145(2): 242-256. [5] Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL. Regulation of phosphate homeostasis by microRNA in Arabidopsis . Plant Cell , 2006, 18(2): 412-421. [6] Ruiz-Ferrer V, Voinnet O. Roles of plant small RNAs inbiotic stress responses. Annu Rev Plant Biol , 2009, 60: 485-510. [7] Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis . Plant Cell , 2004, 16(8): 2001-2019. [8] Zhao M, Ding H, Zhu JK, Zhang FS, Li WX. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis . New Phytol , 2011, 190(4): 906-915. [9] Kulcheski FR, de Oliveira LF, Molina LG, Almerao MP, Rodrigues FA, Marcolino J, Barbosa JF, Stolf-Moreira R, Nepomuceno AL, Marcelino-Guimaraes FC, Abdelnoor RV, Nascimento LC, Carazzolle MF, Pereira GAG, Margis R. Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics , 2011, 12: 307. [10] Zhao YP, Xu ZH, Mo QC, Zou C, Li WX, Xu YB, Xie CX. Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. Ann Bot , 2013, 112(3): 633-642. [11] Shen JQ, Xie KB, Xiong LZ. Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Genet Genom , 2010, 284(6): 477-488. [12] Qin YR, Duan ZX, Xia XL, Yin WL. Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in Populus euphratica . Plant Cell Rep , 2011, 30(10): 1893-1907. [13] Contreras-Cubas C, Palomar M, Arteaga-Vázquez M, Reyes JL, Covarrubias AA. Non-coding RNAs in the plant response to abiotic stress. Planta , 2012, 236(4): 943-958. [14] Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev , 2002, 16(13): 1616-1626. [15] Wang L, Wang MB, Tu JX, Helliwell CA, Waterhouse PM, Dennis ES, Fu TD, Fan YL. Cloning and characterization of microRNAs from Brassica napus . FEBS Lett , 2007, 581(20): 3848-3856. [16] Luan MD, Xu MY, Lu YM, Zhang QX, Zhang L, Zhang CY, Fan YL, Lang ZH, Wang L. Family-wide survey of miR169s and NF-YAs and their expression profiles response to abiotic stress in maize roots. PLoS One , 2014, 9(3): e91369. [17] Xu MY, Dong Y, Zhang QX, Zhang L, Luo YZ, Sun J, Fan YL, Wang L. Identification of miRNAs and their targets from Brassica napus by high-throughput sequencing and degradome analysis. BMC Genomics , 2012, 13: 421. [18] Calvino M, Messing J. Discovery of MicroRNA169 gene copies in genomes of flowering plants through positional information. Genome Biol Evol , 2013, 5(2): 402-417. [19] Zhao BT, Liang RQ, Ge LF, Li W, Xiao HS, Lin HX, Ruan KC, Jin YX. Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun , 2007, 354(2): 585-590. [20] Zhou XF, Sunkar R, Jin HL, Zhu JK, Zhang WX. Genome-wide identification and analysis of small RNAs originated from natural antisense transcripts in Oryza sativa . Genome Res , 2009, 19(1): 70-78. [21] Li BS, Qin YR, Duan H, Yin WL, Xia XL. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica . J Exp Bot , 2011, 62(11): 3765-3779. [22] Dolfini D, Gatta R, Mantovani R. NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol , 2012, 47(1): 29-49. [23] Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. Gene , 1999, 239(1): 15-27. [24] Donati G, Gatta R, Dolfini D, Fossati A, Ceribelli M, Mantovani R. An NF-Y-dependent switch of positive and negative histone methyl marks on CCAAT promoters. PLoS One , 2008, 3(4): e2066. [25] Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Jacqueline E. Heard Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA , 2007, 104(42): 16450-16455. [26] Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernie T, Ott T, Gamas P, Crespi M Niebel A. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula . Genes Dev , 2006, 20(22): 3084-3088. [27] Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell , 2008, 20(8): 2238-2251. [28] Sinha S, Maity SN, Lu J, de Crombrugghe B. Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci USA , 1995, 92(5): 1624-1628. [29] Zhao BT, Ge LF, Liang RQ, Li W, Ruan KC, Lin HX, Jin YX. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol , 2009, 10: 29. [30] Combier JP, de Billy F, Gamas P, Niebel A, Rivas S. Trans-regulation of the expression of the transcription factor MtHAP2-1 by a uORF controls root nodule development. Genes Dev , 2008, 22(11): 1549-1559. [31] Ni ZY, Hu Z, Jiang QY, Zhang H. GmNFYA3 , a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol , 2013, 82(1-2): 113-129. [32] Xu MY, Zhang L, Li WW, Hu XL, Wang MB, Fan YL, Zhang CY, Wang L. Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana . J Exp Bot , 2014, 65(1): 89-101. [33] Griffiths S, Dunford RP, Coupland G, Laurie DA. The evolution of CONSTANS -like gene families in barley, rice, and Arabidopsis . Plant Physiol , 2003, 131(4): 1855-1867. [34] Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis . Plant Cell , 2006, 18(11): 2971-2984. [35] Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun TP. Global analysis of della direct targets in early gibberellin signaling in Arabidopsis . Plant Cell , 2007, 19(10): 3037-3057. [36] Franks SJ, Sim S, Weis AE. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci USA , 2007, 104(4): 1278-1282. [37] Yi X, Zhang ZH, Ling Y, Xu WY, Su Z. PNRD: a plant non-coding RNA database. Nucleic Acids Res , 2015, 43(D1): D982-D989. (责任编委: 张根发) |