[1] Luo JL, Zhao N, Lu CM. Plant Trihelix transcription factors family. Hereditas (Beijing), 2012, 34(12): 1551–1560.
罗军玲, 赵娜, 卢长明. 植物Trihelix转录因子家族研究进展. 遗传, 2012, 34(12): 1551–1560.
[2] Kay SA, Keith B, Shinozaki K, Chye ML, Chua NH. The rice phytochrome gene: structure, autoregulated expression, and binding of GT-1 to a conserved site in the 5' upstream region. Plant Cell, 1989, 1(3): 351–360.
[3] Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol, 2004, 135(4): 2150–2161.
[4] Fang YJ, Xie KB, Hou X, Hu HH, Xiong LZ. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mol Genet Genom, 2010, 283(2): 157–169.
[5] Wang R, Hong GF, Han B. Transcript abundance of rml 1, encoding a putative GT1-like factor in rice, is up-regul?ated by Magnaporthe grisea and down-regulated by light. Gene, 2004, 324: 105–115.
[6] Wang XH, Li QT, Chen HW, Zhang WK, Ma B, Chen SY, Zhang JS. Trihelix transcription factor GT-4 mediates salt tolerance via interaction with TEM2 in Arabidopsis. BMC Plant Biol, 2014, 14(1): 339.
[7] Xie ZM, Zou HF, Lei G, Wei W, Zhou QY, Niu CF, Liao Y, Tian AG, Ma B, Zhang WK, Zhang JS, Chen SY. Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS One, 2009, 4(9): e6898.
[8] Xi J, Qiu YJ, Du LQ, Poovaiah BW. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/cal?modulin and responds to cold and salt stresses. Plant Sci, 2012, 185–186: 274–280.
[9] Li B, Jiang S, Yu X, Cheng C, Chen SX, Cheng YB, Yuan JS, Jiang DH, He P, Shan LB. Phosphorylation of Trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity. Plant Cell, 2015, 27(3): 839–856.
[10] Giuntoli B, Lee SC, Licausi F, Kosmacz M, Oosumi T, van Dongen JT, Bailey-Serres J, Perata P. A Trihelix DNA binding protein counterbalances hypoxia-responsive transcriptional activation in Arabidopsis. PLoS Biol, 2014, 12(9): e1001950.
[11] Yoo CY, Pence HE, Jin JB, Miura K, Gosney MJ, Hasegawa PM, Mickelbart MV. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell, 2010, 22(12): 4128–4141.
[12] Weng H, Yoo CY, Gosney MJ, Hasegawa PM, Mickelbart MV. Poplar GTL1 is a Ca2+/calmodulin-binding transcription factor that functions in plant water use efficiency and drought tolerance. PLoS One, 2012, 7(3): e32925.
[13] Griffith ME, Concei??o ADS, Smyth DR. PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower. Development, 1999, 126(24): 5635–5644.
[14] Brewer PB, Howles PA, Dorian K, Griffith ME, Ishida T, Kaplan-Levy RN, Kilinc A, Smyth DR. PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development, 2004, 131(16): 4035–4045.
[15] O’Brien M, Kaplan-Levy RN, Quon T, Sappl PG, Smyth DR. PETAL LOSS, a trihelix transcription factor that represses growth in Arabidopsis thaliana, binds the energy-sensing SnRK1 kinase AKIN10. J Exp Bot, 2015, 66(9): 2475–2485.
[16] Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D. Identification of genes required for embryo development in Arabidopsis. Plant Physiol, 2004, 135(3): 1206–1220.
[17] Gao MJ, Lydiate DJ, Li X, Lui H, Gjetvaj B, Hegedus DD, Rozwadowski K. Repression of seed maturation genes by a Trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell, 2009, 21(1): 54–71.
[18] Willmann MR, Mehalick AJ, Packer RL, Jenik PD. MicroRNAs regulate the timing of embryo maturation in Arabidopsis. Plant Physiol, 2011, 155(4): 1871–1884.
[19] Kaplan-Levy RN, Brewer PB, Quon T, Smyth DR. The trihelix family of transcription factors-light, stress and development. Trends Plant Sci, 2012, 17(3): 163–171.
[20] Yu CY, Cai XF, Ye ZB, Li HX. Genome-wide identification and expression profiling analysis of trihelix gene family in tomato. Biochem Biophys Res Commun, 2015, 468(4): 653–659.
[21] Scott A, Wyatt S, Tsou PL, Robertson D, Allen NS. Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques, 1999, 26(6): 1125, 1128–1132.
[22] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method. Methods, 2001, 25(4): 402–408.
[23] Zhou HB, Li SF, Deng ZY, Wang XP, Chen T, Zhang JS, Chen SY, Ling HQ, Zhang AM, Wang DW, Zhang XQ. Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant J, 2007, 52(3): 420–434.
[24] Wang GF, Wei XN, Fan RC, Zhou HB, Wang XP, Yu CM, Dong LL, Dong ZY, Wang XJ, Kang ZS, Ling HQ, Shen QH, Wang DW, Zhang XQ. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytol, 2011, 191(2): 418–431.
[25] Bruun-Rasmussen M, Madsen CT, Jessing S, Albrechtsen M. Stability of barley stripe mosaic virus-induced gene silencing in barley. Mol Plant-Microbe Interact, 2007, 20(11): 1323–1331.
[26] Kaplan-Levy RN, Quon T, O'Brien M, Sappl PG, Smyth DR. Functional domains of the PETAL LOSS protein, a trihelix transcription factor that represses regional growth in Arabidopsis thaliana. Plant J, 2014, 79(3): 477–491.
[27] Ayadi M, Delaporte V, Li YF, Zhou DX. Analysis of GT-3a identifies a distinct subgroup of trihelix DNA-binding transcription factors in Arabidopsis. FEBS Lett, 2004, 562(1–3): 147–154.
[28] García-Cano E, Magori S, Sun Q, Ding ZH, Lazarowitz SG, Citovsky V. Interaction of Arabidopsis trihelix-do?main transcription factors VFP3 and VFP5 with Agrobacterium virulence protein VirF. PLoS One, 2015, 10(11): e0142128.
[29] Maréchal E, Hiratsuka K, Delgado J, Nairn A, Qin J, Chait BT, Chua NH. Modulation of GT-1 DNA-binding activity by calcium-dependent phosphorylation. Plant Mol Biol, 1999, 40(3): 373–386.
[30] Hiratsuka K, Wu XD, Fukuzawa H, Chua NH. Molecular dissection of GT-1 from Arabidopsis. Plant Cell, 1994, 6(12): 1805–1813.
[31] Nagata T, Niyada E, Fujimoto N, Nagasaki Y, Noto K, Miyanoiri Y, Murata J, Hiratsuka K, Katahira M. Solution structures of the trihelix DNA-binding domains of the wild-type and a phosphomimetic mutant of Arabidopsis GT-1: mechanism for an increase in DNA-binding affinity through phosphorylation. Proteins, 2010, 78(14): 3033– 3047.
[32] Gourrierec JL, Li YF, Zhou DX. Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA-TBP-TATA complex. Plant J, 1999, 18(6): 663–668.
[33] Breuer C, Kawamura A, Ichikawa T, Tominaga-Wada R, Wada T, Kondou Y, Muto S, Matsui M, Sugimoto K. The Trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome. Plant Cell, 2009, 21(8): 2307–2322.
[34] Ji JH, Zhou YJ, Wu HH, Yang LM. Genome-wide analysis and functional prediction of the Trihelix transcription factor family in rice. Hereditas (Beijing), 2015, 37(12): 1228–1241.
纪剑辉, 周颖君, 吴贺贺, 杨立明. 水稻Trihelix转录因子家族全基因组分析及功能预测. 遗传, 2015, 37(12): 1228–1241.
[35] Lin ZW, Griffith ME, Li XR, Zhu ZF, Tan LB, Fu YC, Zhang WX, Wang XK, Xie DX, Sun CQ. Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226(1): 11–20.
[36] Li CB, Zhou AL, Sang T. Rice domestication by reducing shattering. Science, 2006, 311(5769): 1936–1939.
[37] Li Y, Liu XD, Dong YM, Xie ZM, Chen SY. Cloning and functional analysis of the cotton Trihelix transcription factor GhGT29. Hereditas (Beijing), 2015, 37(12): 1218– 1227.
李月, 刘晓东, 董永梅, 谢宗铭, 陈受宜. 棉花Trihelix转录因子GhGT29基因的克隆及功能分析. 遗传, 2015, 37(12): 1218–1227.
[38] Green PJ, Kay SA, Chua NH. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J, 1987, 6(9): 2543–2549. |