[1] Fan GQ, Bai YJ, Gao YL, Zhang W, Zhang S, Shen Y, Liu K, Yu J. Investigation and analysis on potato viral disease in China. J Northeast Agric Univ , 2013, 44(7): 74-79. 范国权, 白艳菊, 高艳玲, 张威, 张抒, 申宇, 刘凯, 喻江. 中国马铃薯主要病毒病发生情况调查与分析. 东北农业大学学报, 2013, 44(7): 74-79. [2] Song BF, Wang SW, Xie KY, Yang YJ, Yang CL, Zhang HL, Li RG, Xing JX, Wu JY, Guo XD, Meng Q, Zhang LM. Status and prospects of sweetpotato viruses elimination in China. Scientia Agric Sinica , 1997, 30(6): 43-48. 宋伯符, 王胜武, 谢开云, 杨永嘉, 杨崇良, 张鹤龄, 李汝刚, 邢继英, 邬景禹, 郭小丁, 孟清, 张立明. 我国甘薯脱毒研究的现状及展望. 中国农业科学, 1997, 30(6): 43-48. [3] Qiao Q, Zhang ZC, Zhang DS, Qin YH, Tian YT, Wang YJ. Serological and molecular detection of viruses infecting sweet potato in China. Acta Phytopath Sinica , 2012, 42(1): 10-16. 乔奇, 张振臣, 张德胜, 秦艳红, 田雨婷, 王永江. 中国甘薯病毒种类的血清学和分子检测. 植物病理学报, 2012, 42(1): 10-16. [4] Zhou QL, Zhang YJ, Huang YD, Li YM, He SL, Yang HK, Liu LS, Wang M. Effect of sweet potato virus disease (SPVD) on sweet potato yield formation. Jiangsu J Agric Sci , 2014, 30(1): 42-46. 周全卢, 张玉娟, 黄迎冬, 李育明, 何素兰, 杨洪康, 刘莉莎, 王梅. 甘薯病毒病复合体(SPVD)对甘薯产量形成的影响. 江苏农业学报, 2014, 30(1): 42-46. [5] Dong F, Zhang CF. Progress and prospects on prevention and control measures of virus disease in sweet potato. Crops , 2016, (3): 6-11. 董芳, 张超凡. 甘薯病毒病防控措施研究进展与展望. 作物杂志, 2016, (3): 6-11. [6] He J, Ma ZQ, Zhang X. Review of botanical pesticide. J Northwest Sci-Tech Univ Agri For ( Nat Sci Ed ), 2006, 34(9): 79-85. 何军, 马志卿, 张兴. 植物源农药概述. 西北农林科技大学学报(自然科学版), 2006, 34(9): 79-85. [7] Wang LG, Ma Q. Inhibition of plant viruses by natural products. Chinese J Biol Control , 2000, 16(3): 127-130. 王利国, 马祁. 天然产物对植物病毒的抑制作用. 中国生物防治, 2000, 16(3): 127-130. [8] Scholthof KBG, Scholthof HB, Jackson AO. Control of plant virus diseases by pathogen-derived resistance in transgenic plants . Plant Physiol , 1993, 102(1): 7-12. [9] Fuchs M, Gonsalves D. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies . Annu Rev Phytopathol , 2007, 45: 173-202. [10] Wang PA, Wu LJ, Yang YK, Wu LC, Ku LX, Chen YH. The antivirus strategies and potential risks of virus- resistant transgenic plants. Henan Agric Sci , 2011, 40(2): 19-24. 王平安, 吴刘记, 杨艳坤, 吴连成, 库丽霞, 陈彦惠. 转基因植物抗病毒策略及其风险分析. 河南农业科学, 2011, 40(2): 19-24. [11] Register III JC, Beachy RN. Resistance to TMV in transgenic plants results from interference with an early event in infection . Virology , 1988, 166(2): 524-532. [12] Miller WA, Koev G, Mohan BR. Are there risks associated with transgenic resistance to luteoviruses?. Plant Dis , 1997, 81(7): 700-710. [13] Falk BW, Bruening G. Will transgenic crops generate new viruses and new diseases?. Science , 1994, 263(5152): 1395-1396. [14] Pruss G, Ge X, Shi XM, Carrington JC, Vance VB. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses . Plant Cell , 1997, 9(6): 859-868. [15] Golemboski DB, Lomonossoff GP, Zaitlin M. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus . Proc Natl Acad Sci USA , 1990, 87(16): 6311-6315. [16] Lapidot M, Gafny R, Ding B, Wolf S, Lucas WJ, Beachy RN. A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J , 1993, 4(6): 959-970. [17] Zrachya A, Kumar PP, Ramakrishnan U, Levy Y, Loyter A, Arazi T, Lapidot M, Gafni Y. Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus. Transgenic Res , 2007, 16(3): 385-398. [18] Jiang L, Wei CH, Li Y. Viral suppression of RNA silencing . Sci China Life Sci , 2012, 55(2): 109-118. [19] Kreuze JF, Savenkov EI, Cuellar W, Li XD, Valkonen JPT. Viral class 1 RNase III involved in suppression of RNA silencing. J Virol , 2005, 79(11): 7227-7238. [20] Butterbach P, Verlaan MG, Dullemans A, Lohuis D, Visser RGF, Bai YL, Kormelink R. Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection . Proc Natl Acad Sci USA , 2014, 111(35): 12942-12947. [21] Shen Y, Xiao A, Huang P, Wang WY, Zhu ZY, Zhang B. TALE nuclease engineering and targeted genome modification. Hereditas ( Beijing ), 2013, 35(4): 395-409. 沈延, 肖安, 黄鹏, 王唯晔, 朱作言, 张博. 类转录激活因子效应物核酸酶(TALEN)介导的基因组定点修饰技术. 遗传, 2013, 35(4): 395-409. [22] Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes . Science , 2007, 315(5819): 1709-1712. [23] Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA . Science , 2008, 322(5909): 1843-1845. [24] Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao YJ, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans -encoded small RNA and host factor RNase III . Nature , 2011, 471(7340): 602-607. [25] Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet , 2011, 45: 247-271. [26] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity . Science , 2012, 337(6096): 816-821. [27] Dominguez AA, Lim WA, Qi LS. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol , 2016, 17(1): 5-15. [28] Bi YW, Sun L, Gao DD, Ding C, Li ZH, Li YD, Cun W, Li QH. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases . PLoS Pathog , 2014, 10(5): e1004090. [29] Hu WH, Kaminski R, Yang F, Zhang YG, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J, Mo XM, Khalili K. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection . Proc Natl Acad Sci USA , 2014, 111(31): 11461-11466. [30] Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF, Gao X. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR- associated Cas9 system to disrupt the hepatitis B virus . Gene Ther , 2015, 22(5): 404-412. [31] Wang JB, Quake SR. RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection . Proc Natl Acad Sci U S A , 2014, 111(36): 13157-13162. [32] Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM. CRISPR/Cas9-mediated viral interference in plants . Genome Biol , 2015, 16: 238. [33] Ji X, Zhang HW, Zhang Y, Wang YP, Gao CX. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants . Nat Plants , 2015, 1(10): 15144. [34] Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat Plants , 2015, 1: 15145 (2015). [35] Nelles DA, Fang MY, O'Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW. Programmable RNA tracking in live cells with CRISPR/Cas9 . Cell , 2016, 165(2): 488-496. [36] O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. Programmable RNA recognition and cleavage by CRISPR/Cas9 . Nature , 2014, 516(7530): 263-266. [37] Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS. Cas9-mediated targeting of viral RNA in eukaryotic cells . Proc Natl Acad Sci USA , 2015, 112(19): 6164-6169. [38] Hull R, Brown F, Payne C. Virology: directory and dictionary of animal, bacterial and plant viruses. Addison- Wesley Longman Publishing Co., Inc., 1989. [39] Londoño A, Riego-Ruiz L, Argüello-Astorga GR. DNA-binding specificity determinants of replication proteins encoded by eukaryotic ssDNA viruses are adjacent to widely separated RCR conserved motifs . Arch Virol , 2010, 155(7): 1033-1046. [40] Wang Z, Pan QH, Gendron P, Zhu WJ, Guo F, Cen S, Wainberg MA, Liang C. CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep , 2016, 15(3): 481-489. [41] Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses . Science , 2016, 351(6277): 1083-1087. [42] Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Hidalgo-Reyes Y, Wiedenheft B, Maxwell KL, Davidson AR. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins . Nature , 2015, 526(7571): 136-139. [43] Maxwell KL. Phages fight back: inactivation of the CRISPR-Cas bacterial immune system by anti-CRISPR proteins . PLoS Pathog , 2016, 12(1): e1005282. [44] Aguirre AJ, Meyers RM, Weir BA, Vazquez F, Zhang CZ, Ben-David U, Cook A, Ha G, Harrington WF, Doshi MB, Kost-Alimova M, Gill S, Xu H, Ali LD, Jiang GZ, Pantel S, Lee Y, Goodale A, Cherniack AD, Oh C, Kryukov G, Cowley GS, Garraway LA, Stegmaier K, Roberts CW, Golub TR, Meyerson M, Root DE, Tsherniak A, Hahn WC. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting . Cancer Discov , 2016, doi:10.1158/2159-8290.CD-16-0154. [45] Levasseur A, Bekliz M, Chabrière E, Pontarotti P, La Scola B, Raoult D. MIMIVIRE is a defence system in mimivirus that confers resistance to virophage . Nature , 2016, 531(7593): 249-252. [46] Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, Ferrante T, Ma D, Donghia N, Fan M, Daringer NM, Bosch I, Dudley DM, O'Connor DH, Gehrke L, Collins JJ. Rapid, low-cost detection of zika virus using programmable biomolecular components . Cell , 2016, 165(5): 1255-1266. [47] López MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E. Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses?. Curr Issues Mol Biol , 2009, 11(1): 13-46. [48] Bogerd HP, Kornepati AVR, Marshall JB, Kennedy EM, Cullen BR. Specific induction of endogenous viral restriction factors using CRISPR/Cas-derived transcriptional activators . Proc Natl Acad Sci USA , 2015, 112(52): E7249-E7256. [49] Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, Chan AH, Miyaoka Y, Holmes K, Spencer CI, Judge LM, Gordon DE, Eskildsen TV, Villalta JE, Horlbeck MA, Gilbert LA, Krogan NJ, Sheikh SP, Weissman JS, Qi LS, So PL, Conklin BR. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs . Cell Stem Cell , 2016, 18(4): 541-553. [50] Silas S, Mohr G, Sidote DJ, Markham LM, Sanchez-Amat A, Bhaya D, Lambowitz AM, Fire AZ. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein . Science , 2016, 351(6276): aad4234. [51] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems . Science , 2013, 339(6121): 819-823. [52] Fujii W, Kawasaki K, Sugiura K, Naito K. Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease . Nucleic Acids Res , 2013, 41(20): e187. [53] Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells . Nat Biotechnol , 2016, doi:10.1038/nbt.3609. [54] Hur JK, Kim K, Been KW, Baek G, Ye S, Hur JW, Ryu SM, Lee YS, Kim JS. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins . Nat Biotechnol , 2016, doi:10.1038/nbt.3596. [55] Ma XL, Zhang QY, Zhu QL, Liu W, Chen Y, Qiu R, Wang B, Yang ZF, Li HY, Lin YR, Xie YY, Shen RX, Chen SF, Wang Z, Chen YL, Guo JX, Chen LT, Zhao XC, Dong ZC, Liu YG. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants . Mol Plant , 2015, 8(8): 1274-1284. [56] Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity . Cell , 2013, 154(6): 1380-1389. [57] Zaitlin M, Hull R. Plant virus-host interactions. Annu Rev Plant Physiol , 1987, 38: 291-315. [58] Shipman SL, Nivala J, Macklis JD, Church GM. Molecular recordings by directed CRISPR spacer acquisition . Science , 2016, doi:10.1126/science.aaf1175. |