[1] Fan GQ, Bai YJ, Gao YL, Zhang W, Zhang S, Shen Y, Liu K, Yu J. Investigation and analysis on potato viral disease in China. J Northeast Agric Univ , 2013, 44(7): 74-79. 范国权, 白艳菊, 高艳玲, 张威, 张抒, 申宇, 刘凯, 喻江. 中国马铃薯主要病毒病发生情况调查与分析. 东北农业大学学报, 2013, 44(7): 74-79. [2] Song BF, Wang SW, Xie KY, Yang YJ, Yang CL, Zhang HL, Li RG, Xing JX, Wu JY, Guo XD, Meng Q, Zhang LM. Status and prospects of sweetpotato viruses elimination in China. Scientia Agric Sinica , 1997, 30(6): 43-48. 宋伯符, 王胜武, 谢开云, 杨永嘉, 杨崇良, 张鹤龄, 李汝刚, 邢继英, 邬景禹, 郭小丁, 孟清, 张立明. 我国甘薯脱毒研究的现状及展望. 中国农业科学, 1997, 30(6): 43-48. [3] Qiao Q, Zhang ZC, Zhang DS, Qin YH, Tian YT, Wang YJ. Serological and molecular detection of viruses infecting sweet potato in China. Acta Phytopath Sinica , 2012, 42(1): 10-16. 乔奇, 张振臣, 张德胜, 秦艳红, 田雨婷, 王永江. 中国甘薯病毒种类的血清学和分子检测. 植物病理学报, 2012, 42(1): 10-16. [4] Zhou QL, Zhang YJ, Huang YD, Li YM, He SL, Yang HK, Liu LS, Wang M. Effect of sweet potato virus disease (SPVD) on sweet potato yield formation. Jiangsu J Agric Sci , 2014, 30(1): 42-46. 周全卢, 张玉娟, 黄迎冬, 李育明, 何素兰, 杨洪康, 刘莉莎, 王梅. 甘薯病毒病复合体(SPVD)对甘薯产量形成的影响. 江苏农业学报, 2014, 30(1): 42-46. [5] Dong F, Zhang CF. Progress and prospects on prevention and control measures of virus disease in sweet potato. Crops , 2016, (3): 6-11. 董芳, 张超凡. 甘薯病毒病防控措施研究进展与展望. 作物杂志, 2016, (3): 6-11. [6] He J, Ma ZQ, Zhang X. Review of botanical pesticide. J Northwest Sci-Tech Univ Agri For ( Nat Sci Ed ), 2006, 34(9): 79-85. 何军, 马志卿, 张兴. 植物源农药概述. 西北农林科技大学学报(自然科学版), 2006, 34(9): 79-85. [7] Wang LG, Ma Q. Inhibition of plant viruses by natural products. Chinese J Biol Control , 2000, 16(3): 127-130. 王利国, 马祁. 天然产物对植物病毒的抑制作用. 中国生物防治, 2000, 16(3): 127-130. [8] Scholthof KBG, Scholthof HB, Jackson AO. Control of plant virus diseases by pathogen-derived resistance in transgenic plants . Plant Physiol , 1993, 102(1): 7-12. [9] Fuchs M, Gonsalves D. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies . Annu Rev Phytopathol , 2007, 45: 173-202. [10] Wang PA, Wu LJ, Yang YK, Wu LC, Ku LX, Chen YH. The antivirus strategies and potential risks of virus- resistant transgenic plants. Henan Agric Sci , 2011, 40(2): 19-24. 王平安, 吴刘记, 杨艳坤, 吴连成, 库丽霞, 陈彦惠. 转基因植物抗病毒策略及其风险分析. 河南农业科学, 2011, 40(2): 19-24. [11] Register III JC, Beachy RN. Resistance to TMV in transgenic plants results from interference with an early event in infection . Virology , 1988, 166(2): 524-532. [12] Miller WA, Koev G, Mohan BR. Are there risks associated with transgenic resistance to luteoviruses?. Plant Dis , 1997, 81(7): 700-710. [13] Falk BW, Bruening G. Will transgenic crops generate new viruses and new diseases?. Science , 1994, 263(5152): 1395-1396. [14] Pruss G, Ge X, Shi XM, Carrington JC, Vance VB. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses . Plant Cell , 1997, 9(6): 859-868. [15] Golemboski DB, Lomonossoff GP, Zaitlin M. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus . Proc Natl Acad Sci USA , 1990, 87(16): 6311-6315. [16] Lapidot M, Gafny R, Ding B, Wolf S, Lucas WJ, Beachy RN. A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J , 1993, 4(6): 959-970. [17] Zrachya A, Kumar PP, Ramakrishnan U, Levy Y, Loyter A, Arazi T, Lapidot M, Gafni Y. Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus. Transgenic Res , 2007, 16(3): 385-398. [18] Jiang L, Wei CH, Li Y. Viral suppression of RNA silencing . Sci China Life Sci , 2012, 55(2): 109-118. [19] Kreuze JF, Savenkov EI, Cuellar W, Li XD, Valkonen JPT. Viral class 1 RNase III involved in suppression of RNA silencing. J Virol , 2005, 79(11): 7227-7238 |