[1] Wise J. Dolly the sheep was a clone, Edinburgh scientist maintains. BMJ , 1998, 316(7131): 573. [2] Wakayama T, Perry ACF, Zuccotti M, Johnson KR, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature , 1998, 394(6691): 369-374. [3] Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM, Cammuso C, Williams JL, Nims SD, Porter CA, Midura P, Palacios MJ, Ayres SL, Denniston RS, Hayes ML, Ziomek CA, Meade HM, Godke RA, Gavin WG, Overström EW, Echelard Y. Production of goats by somatic cell nuclear transfer. Nat Biotechnol , 1999, 17(5): 456-461. [4] Kitiyanant Y, Saikhun J, Chaisalee B, White KL, Pavasuthipaisit K. Somatic cell cloning in Buffalo ( Bubalus bubalis ): effects of interspecies cytoplasmic recipients and activation procedures. Cloning Stem Cells , 2001, 3(3): 97-104. [5] Chesné P, Adenot PG, Viglietta C, Baratte M, Boulanger L, Renard JP. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol , 2002, 20(4): 366-369. [6] Zhou Q, Renard JP, Le Friec G, Brochard V, Beaujean N, Cherifi Y, Fraichard A, Cozzi J. Generation of fertile cloned rats by regulating oocyte activation. Science , 2003, 302(5648): 1179. [7] Lee BC, Kim MK, Jang G, Oh HJ, Yuda F, Kim HJ, Shamim M, Kim JJ, Kang SK, Schatten G, Hwang WS. Dogs cloned from adult somatic cells. Nature , 2005, 436(7051): 641. [8] Li ZY, Sun XS, Chen J, Liu XM, Wisely SM, Zhou Q, Renard JP, Leno GH, Engelhardt JF. Cloned ferrets produced by somatic cell nuclear transfer. Dev Biol , 2006, 293(2): 439-448. [9] Polejaeva IA, Chen SH, Vaught TD, Page RL, Mullins J, Ball S, Dai YF, Boone J, Walker S, Ayares DL, Colman A, Campbell KHS. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature , 2000, 407(6800): 86-90. [10] Lagutina I, Fulka H, Lazzari G, Galli C. Interspecies somatic cell nuclear transfer: advancements and problems. Cell Reprogram , 2013, 15(5): 374-384. [11] Zhao JG, Whyte J, Prather RS. Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res , 2010, 341(1): 13-21. [12] Whitworth KM, Li RF, Spate LD, Wax DM, Rieke A, Whyte JJ, Manandhar G, Sutovsky M, Green JA, Sutovsky P, Prather RS. Method of oocyte activation affects cloning efficiency in pigs. Mol Reprod Dev , 2009, 76(5): 490-500. [13] Nánássy L, Lee K, Jávor A, Macháty Z. Effects of activation methods and culture conditions on development of parthenogenetic porcine embryos. Anim Reprod Sci , 2008, 104(2-4): 264-274. [14] McGraw S, Oakes CC, Martel J, Cirio MC, De Zeeuw P, Mak W, Plass C, Bartolomei MS, Chaillet JR, Trasler JM. Loss of DNMT1o disrupts imprinted X chromosome inactivation and accentuates placental defects in females. PLoS Genet , 2013, 9(11): e1003873. [15] Park SJ, Park HJ, Koo OJ, Choi WJ, Moon JH, Kwon DK, Kang JT, Kim S, Choi JY, Jang G, Lee BC. Oxamflatin improves developmental competence of porcine somatic cell nuclear transfer embryos. Cell Reprogram , 2012, 14(5): 398-406. [16] Wutz A. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet , 2011, 12(8): 542-553. [17] Wutz A, Rasmussen TP, Jaenisch R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet , 2002, 30(2): 167-174. [18] Inoue K, Kohda T, Sugimoto M, Sado T, Ogonuki N, Matoba S, Shiura H, Ikeda R, Mochida K, Fujii T, Sawai K, Otte AP, Tian XC, Yang XZ, Ishino F, Abe K, Ogura A. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science , 2010, 330(6003): 496-499. [19] Matoba S, Inoue K, Kohda T, Sugimoto M, Mizutani E, Ogonuki N, Nakamura T, Abe K, Nakano T, Ishino F, Ogura A. RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos. Proc Natl Acad Sci USA , 2011, 108(51): 20621-20626. [20] Oikawa M, Inoue K, Shiura H, Matoba S, Kamimura S, Hirose M, Mekada K, Yoshiki A, Tanaka S, Abe K, Ishino F, Ogura A. Understanding the X chromosome inactivation cycle in mice: A comprehensive view provided by nuclear transfer. Epigenetics , 2014, 9(2): 204-211. [21] Mao JJ, Xie SX, Zee J, Soeller I, Li QS, Rockwell K, Amsterdam JD. Rhodiola rosea versus sertraline for major depressive disorder: A randomized placebo-controlled trial. Phytomedicine , 2015, 22(3): 394-399. [22] Li J, Zhang Y, Chen KL, Shan QW, Wang YP, Liang Z, Gao CX. CRISPR/Cas: a novel way of RNA-guided genome editing. Hereditas ( Beijing ), 2013, 35(11): 1265- 1273. 李君, 张毅, 陈坤玲, 单奇伟, 王延鹏, 梁振, 高彩霞. CRISPR/Cas系统: RNA靶向的基因组定向编辑新技术. 遗传, 2013, 35(11): 1265-1273. [23] Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature , 2010, 468(7320): 67-71. [24] Zheng W, Gu F. Progress of application and off-target effects of CRISPR/Cas9. Hereditas ( Beijing ), 2015, 37(10): 1003-1010. 郑武, 谷峰. CRISPR/Cas9的应用及脱靶效应研究进展. 遗传, 2015, 37(10): 1003-1010. [25] Lin YN, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res , 2014, 42(11): 7473-7485. [26] Zhang YL, Ge XL, Yang FY, Zhang LP, Zheng JY, Tan XF, Jin ZB, Qu J, Gu F. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep , 2014, 4: 5405. [27] Duan JZ, Lu GQ, Xie Z, Lou ML, Luo J, Guo L, Zhang Y. Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Cell Res , 2014, 24(8): 1009-1012. [28] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science , 2013, 339(6121): 819-823. [29] Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science , 2013, 339(6121): 823-826. [30] Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res , 2014, 24(1): 132-141. [31] Dang Y, Jia GX, Choi J, Ma HM, Anaya E, Ye CT, Shankar P, Wu HQ. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol , 2015, 16: 280. [32] Lee CM, Cradick TJ, Bao G. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther , 2016, 24(3): 645-654. [33] Slaymaker IM, Gao LY, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science , 2016, 351(6268): 84-88. [34] Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng ZL, Joung JK. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature , 2016, 529(7587): 490-495. [35] Bultmann S, Morbitzer R, Schmidt CS, Thanisch K, Spada F, Elsaesser J, Lahaye T, Leonhardt H. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res , 2012, 40(12): 5368-5377. [36] Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, Kim S, Lee C, Jeong E, Chung E, Kim D, Lee MS, Go EM, Song HJ, Kim H, Cho N, Bang D, Kim S, Kim JS. A library of TAL effector nucleases spanning the human genome. Nat Biotechnol , 2013, 31(3): 251-258. [37] Horii T, Arai Y, Yamazaki M, Morita S, Kimura M, Itoh M, Abe Y, Hatada I. Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep , 2014, 4: 4513. [38] Sun JH. Research on gene differential expression in sister blastomeres in2-cell mouse embryo[D]. Yangling: Northwest A&F University, 2012. 孙健红. 小鼠2-细胞胚胎姐妹卵裂球基因差异表达研究[学位论文]. 杨凌: 西北农林科技大学, 2012. [39] Luo XM, Xiao W, Feng C, Long C, Yan J, Xue ZH, Yun P, Pan DK. Timing of the first zygotic cleavage as a developmental potential marker for porcine cloned embryos. Prog Biochem Biophys , 2010, 37(12): 1339-1345. 罗学明, 肖炜, 冯冲, 龙川, 闫军, 薛振华, 云鹏, 潘登科. 初次卵裂时间是猪克隆胚胎发育潜能的重要标识. 生物化学与生物物理进展, 2010, 37(12): 1339-1345. |