[1] | Zhang T, Haws P, Wu Q . Multiple variable first exons: a mechanism for cell- and tissue-specific gene regulation. Genome Res, 2004,14(1):79-89. | [2] | Huang H, Wu Q . Cloning and comparative analyses of the zebrafish Ugt repertoire reveal its evolutionary diversity. PLoS One, 2010,5(2):e9144. | [3] | Li C, Wu Q . Adaptive evolution of multiple-variable exons and structural diversity of drug-metabolizing enzymes. BMC Evol Biol, 2007,7:69. | [4] | Nagar S, Blanchard RL . Pharmacogenetics of uridine diphosphoglucuronosyltransferase (UGT) 1A family members and its role in patient response to irinotecan. Drug Metab Rev, 2006,38(3):393-409. | [5] | Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, Miners JO, Owens IS, Nebert DW . Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genom, 2005,15(10):677-685. | [6] | Yang N, Sun R, Liao X, Aa J, Wang G . UDP-glucuronosyltransferases (UGTs) and their related metabolic cross- talk with internal homeostasis: a systematic review of UGT isoforms for precision medicine. Pharmacol Res, 2017,121:169-183. | [7] | Rowland A, Miners JO, Mackenzie PI . The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell B, 2013,45(6):1121-1132. | [8] | Wu Q, Zhang T, Cheng JF, Kim Y, Grimwood J, Schmutz J, Dickson M, Noonan JP, Zhang MQ, Myers RM, Maniatis T . Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res, 2001,11(3):389-404. | [9] | Tukey RH, Strassburg CP . Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol, 2000,40:581-616. | [10] | Heath H, de Almeida CR, Sleutels F, Dingjan G, van de Nobelen S, Jonkers I, Ling KW, Gribnau J, Renkawitz R, Grosveld F, Hendriks RW, Galjart N . CTCF regulates cell cycle progression of alphabeta T cells in the thymus. EMBO J, 2008,27(21):2839-2850. | [11] | de Wit E, Vos ES, Holwerda SJ, Valdes-Quezada C, Verstegen MJ, Teunissen H, Splinter E, Wijchers PJ, Krijger PH, de Laat W . CTCF binding polarity determines chromatin looping. Mol Cell, 2015,60(4):676-684. | [12] | Ong CT, Corces VG . CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet, 2014,15(4):234-246. | [13] | Huang H, Wu Q . CRISPR double cutting through the labyrinthine architecture of 3D genomes. J Genet Genomics, 2016,43(5):273-288. | [14] | Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B . Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell, 2007,128(6):1231-1245. | [15] | Nakahashi H, Kieffer Kwon KR, Resch W, Vian L, Dose M, Stavreva D, Hakim O, Pruett N, Nelson S, Yamane A, Qian J, Dubois W, Welsh S, Phair RD, Pugh BF, Lobanenkov V, Hager GL, Casellas R . A genome-wide map of CTCF multivalency redefines the CTCF code. Cell Rep, 2013,3(5):1678-1689. | [16] | Faure AJ, Schmidt D, Watt S, Schwalie PC, Wilson MD, Xu H, Ramsay RG, Odom DT, Flicek P . Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules. Genome Res, 2012,22(11):2163-2175. | [17] | Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G . CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell, 2004,13(2):291-298. | [18] | Watrin E, Kaiser FJ, Wendt KS . Gene regulation and chromatin organization: relevance of cohesin mutations to human disease. Curr Opin Genet Dev, 2016,37:59-66. | [19] | Kagey MH, Newman JJ, Bilodeau S, Zhan Y Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA , . Mediator and cohesin connect gene expression and chromatin architecture. Nature, 2010,467(7314):430-435. | [20] | Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters JM . Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature, 2008,451(7180):796-801. | [21] | Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, Grosveld F, Galjart N, de Laat W . CTCF mediates long- range chromatin looping and local histone modification in the beta-globin locus. Genes Dev, 2006,20(17):2349-2354. | [22] | Handoko L, Xu H, Li G, Ngan CY, Chew E, Schnapp M, Lee CW, Ye C, Ping JL, Mulawadi F, Wong E, Sheng J, Zhang Y, Poh T, Chan CS, Kunarso G, Shahab A, Bourque G, Cacheux-Rataboul V, Sung WK, Ruan Y, Wei CL . CTCF-mediated functional chromatin interactome in pluripotent cells. Nat Genet, 2011,43(7):630-638. | [23] | Guo Y, Monahan K, Wu H, Gertz J, Varley KE, Li W, Myers RM, Maniatis T, Wu Q . CTCF/cohesin-mediated DNA looping is required for protocadherin α promoter choice. Proc Natl Acad Sci USA, 2012,109(51):21081-21086. | [24] | Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL . A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 2014,159(7):1665-1680. | [25] | Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin DU, Jung I, Wu H, Zhai Y, Tang Y, Lu Y, Wu Y, Jia Z, Li W, Zhang MQ, Ren B, Krainer AR, Maniatis T, Wu Q . CRISPR inversion of CTCF Sites alters genome topology and enhancer/promoter function. Cell, 2015,162(4):900-910. | [26] | Li JH, Shou J, Wu Q . DNA fragment editing of genomes by CRISPR/Cas9. Hereditas(Beijing), 2015,37(10):992-1002. | [26] | 李金环, 寿佳, 吴强 . CRISPR/Cas9系统在基因组DNA片段编辑中的应用. 遗传, 2015,37(10):992-1002. | [27] | Shou J, Li J, Liu Y, Wu Q, . Precise and predictable CRISPR chromosomal rearrangements reveal principles of Cas9-Mediated nucleotide insertion. Mol Cell, 2018, 71(4): 498-509. e4. | [28] | Doudna JA, Charpentier E . Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014,346(6213):1258096. | [29] | Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE . Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat Rev Drug Discov, 2017,16(2):89-100. | [30] | Li J, Shou J, Guo Y, Tang Y, Wu Y, Jia Z, Zhai Y, Chen Z, Xu Q, Wu Q . Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. J Mol Cell Biol, 2015,7(4):284-298. | [31] | Ziebarth JD, Bhattacharya A, Cui Y . CTCFBSDB 2.0: a database for CTCF-binding sites and genome organization. Nucleic Acids Res, 2012,41(Database issue):D188-194. | [32] | Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L . Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc, 2012,7(3):562-578. | [33] | Rhee HS, Pugh BF . Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell, 2011,147(6):1408-1419. | [34] | Yin M, Wang J, Wang M, Li X, Zhang M, Wu Q, Wang Y . Molecular mechanism of directional CTCF recognition of a diverse range of genomic sites. Cell Res, 2017,27(11):1365-1377. | [35] | Schmidt D, Schwalie PC, Ross-Innes CS, Hurtado A, Brown GD, Carroll JS, Flicek P, Odom DT . A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res, 2010,20(5):578-588. | [36] | Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, Aebersold R, Ranish JA, Krumm A . CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA, 2008,105(24):8309-8314. | [37] | Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F . Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013,154(6):1380-1389. | [38] | Bao A, Burritt DJ, Chen H, Zhou X, Cao D, Tran LP . The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol, 2019,39(3):321-336. | [39] | Jiang F, Doudna JA . CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys, 2017,46:505-529. | [40] | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821. | [41] | Owens IS, Basu NK, Banerjee R . UDP-Glucuronosyltransferases: gene structures of UGT1 and UGT2 families. Methods Enzymol, 2005,400:1-22. | [42] | Wang Y, Huang H, Wu Q . Characterization of the zebrafish Ugt repertoire reveals a new class of drug-metabolizing UDP glucuronosyltransferases. Mol Pharmacol, 2014,86(1):62-75. | [43] | Bartlett MG, Gourley GR . Assessment of UGT polymerphisms and neonatal jaundice. Semin Perinatol, 2011,35(3):127-133. | [44] | Che F, Luo ZY . Research progress of UGT1A1 gene in the pathogenesis of Gilbert and Crigler-Najjar syndromes. J Chin Prac Diagn Ther, 2015,29(3):219-222. | [44] | 车芳, 骆子义 . UGT1A1基因在Gilbert综合征及Crigler-Najjar综合征发病机制中研究进展. 中华实用诊断与治疗杂志, 2015,29(3):219-222. | [45] | Wang LY, Huang HY, Wu Q . The diversity of DNA fragment editing by CRISPR/Cas9 in highly homologous or repetitive sequences. Hereditas(Beijing), 2017,39(4):313-325. | [45] | 汪乐洋, 黄海燕, 吴强 . 利用CRISPR/Cas9对基因组中高度同源DNA片段编辑多样性的遗传学研究. 遗传, 2017,39(04):313-325. | [46] | Wu Q, Maniatis T . A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell, 1999,97(6):779-790. | [47] | Wu Q . Comparative genomics and diversifying selection of the clustered vertebrate protocadherin genes. Genetics, 2005,169(4):2179-2188. | [48] | Zhai Y, Xu Q, Guo Y, Wu Q . Characterization of a cluster of CTCF-binding sites in a protocadherin regulatory region. Hereditas(Beijing), 2016,38(4):323-336. | [48] | 翟亚男, 许泉, 郭亚, 吴强 . 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析. 遗传, 2016,38(04):323-336. |
|