遗传 ›› 2022, Vol. 44 ›› Issue (5): 383-397.doi: 10.16288/j.yczz.21-411
张元1(), 赵语婷1, 庄乐南1,2,3(), 贺津3()
收稿日期:
2022-01-18
修回日期:
2022-03-03
出版日期:
2022-05-20
发布日期:
2022-03-28
通讯作者:
庄乐南,贺津
E-mail:zhangyuan2020@zju.edu.cn;hejin@zju.edu.cn
作者简介:
张元,博士研究生,研究方向:转录调控。E-mail: 基金资助:
Yuan Zhang1(), Yuting Zhao1, Lenan Zhuang1,2,3(), Jin He3()
Received:
2022-01-18
Revised:
2022-03-03
Online:
2022-05-20
Published:
2022-03-28
Contact:
Zhuang Lenan,He Jin
E-mail:zhangyuan2020@zju.edu.cn;hejin@zju.edu.cn
Supported by:
摘要:
哺乳动物心血管系统发育过程中,各分子、细胞和组织器官形态发生过程的精细协调对于形成成熟且功能齐全的心血管系统是不可或缺的,这些过程出现异常通常会导致严重的先天性心血管发育缺陷。多细胞生物中细胞命运的决定和维持在很大程度上依赖于对RNA聚合酶II (Pol II)转录活性的时空精确调控,而转录中介体(Mediator)在Pol II转录过程中起着重要的协同作用。Mediator是一种进化上保守的多亚基蛋白质复合体,包括头部、中部、尾部和激酶部四个部分,是转录因子和基础转录机器之间的功能联系的桥梁。近年来,鉴于Mediator在基因表达中的关键作用,越来越多的人类心血管疾病被证实与特定的Mediator基因突变相关,如心脏瓣膜缺陷、大动脉转位、DiGeorge综合征及一些与能量稳态失衡相关的心血管疾病。本文就Mediator在心血管系统发育和疾病中的作用进行综述,重点讨论Mediator对转录调控的影响在心血管疾病发生发展中的作用,旨在为与Mediator相关的心血管系统发育和疾病的研究提供广阔的研究思路。
张元, 赵语婷, 庄乐南, 贺津. 转录中介体复合物在心血管发育和疾病中的转录调控作用[J]. 遗传, 2022, 44(5): 383-397.
Yuan Zhang, Yuting Zhao, Lenan Zhuang, Jin He. Transcriptional regulation of transcriptional Mediator complexes in cardiovascular development and disease[J]. Hereditas(Beijing), 2022, 44(5): 383-397.
表1
与Mediator相关的心血管疾病"
亚基 | 心血管疾病 | 生物进程 | 研究对象 | 参考文献 |
---|---|---|---|---|
MED1 | 薄心肌壁综合征 | 心肌壁、心肌小梁发育异常 | 人类 | [ |
MED12 | 先天性心脏畸形 | 心血管系统发育缺陷 | 人类 | [ |
MED13 | 代谢性心脏病 | 能量代谢障碍 | 小鼠 | [ |
MED13L | 大动脉转位 | 早期心脏发育缺陷 | 人类 | [ |
MED15 | DiGeorge综合征 | 心脏畸形 | 人类 | [ |
MED23 | 心脏水肿、心率降低 | 血管平滑肌发育异常 | 斑马鱼 | [ |
MED25 | 心室和(或)心房间隔缺损 | MED25与Mediator间相互作用受损 | 人类 | [ |
MED30 | 扩张性心肌病 | 心脏线粒体功能障碍 | 小鼠 | [ |
CDK8 | 过表达导致进行性扩张型心肌病、心力衰竭 | 左心室心肌细胞显著延长、横管紊乱、钙处理功能障碍 | 小鼠 | [ |
[1] |
Jeronimo C, Robert F. The mediator complex: at the nexus of RNA polymerase II transcription. Trends Cell Biol, 2017, 27(10):765-783.
doi: S0962-8924(17)30116-2 pmid: 28778422 |
[2] |
Allen BL, Taatjes DJ. The mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol, 2015, 16(3):155-166.
doi: 10.1038/nrm3951 |
[3] |
Hsieh THS, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell, 2015, 162(1):108-119.
doi: 10.1016/j.cell.2015.05.048 |
[4] |
Huang SD, Hölzel M, Knijnenburg T, Schlicker A, Roepman P, McDermott U, Garnett M, Grernrum W, Sun C, Prahallad A, Groenendijk FH, Mittempergher L, Nijkamp W, Neefjes J, Salazar R, Ten Dijke P, Uramoto H, Tanaka F, Beijersbergen RL, Wessels LFA, Bernards R. Med12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell, 2012, 151(5):937-950.
doi: 10.1016/j.cell.2012.10.035 |
[5] |
Pelish HE, Liau BB, Nitulescu II, Tangpeerachaikul A, Poss ZC, Da Silva DH, Caruso BT, Arefolov A, Fadeyi O, Christie AL, Du K, Banka D, Schneider EV, Jestel A, Zou G, Si C, Ebmeier CC, Bronson RT, Krivtsov AV, Myers AG, Kohl NE, Kung AL, Armstrong SA, Lemieux ME, Taatjes DJ, Shair MD. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature, 2015, 526(7572):273-276.
doi: 10.1038/nature14904 |
[6] |
D'Urso A, Takahashi YH, Xiong B, Marone J, Coukos R, Randise-Hinchliff C, Wang JP, Shilatifard A, Brickner JH. Set1/COMPASS and mediator are repurposed to promote epigenetic transcriptional memory. eLife, 2016, 5:e16691.
doi: 10.7554/eLife.16691 |
[7] |
Tantale K, Mueller F, Kozulic-Pirher A, Lesne A, Victor JM, Robert MC, Capozi S, Chouaib R, Bäcker V, Mateos-Langerak J, Darzacq X, Zimmer C, Basyuk E, Bertrand E. A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat Commun, 2016, 7:12248.
doi: 10.1038/ncomms12248 |
[8] |
Eyboulet F, Cibot C, Eychenne T, Neil H, Alibert O, Werner M, Soutourina J. Mediator links transcription and DNA repair by facilitating Rad2/XPG recruitment. Genes Dev, 2013, 27(23):2549-2562.
doi: 10.1101/gad.225813.113 |
[9] |
Thomas-Claudepierre AS, Robert I, Rocha PP, Raviram R, Schiavo E, Heyer V, Bonneau R, Luo VM, Reddy JK, Borggrefe T, Skok JA, Reina-San-Martin B. Mediator facilitates transcriptional activation and dynamic long-range contacts at the IgH locus during class switch recombination. J Exp Med, 2016, 213(3):303-312.
doi: 10.1084/jem.20141967 |
[10] |
Krebs P, Fan WW, Chen YH, Tobita K, Downes MR, Wood MR, Sun L, Li XH, Xia Y, Ding N, Spaeth JM, Moresco EMY, Boyer TG, Lo CWY, Yen J, Evans RM, Beutler B. Lethal mitochondrial cardiomyopathy in a hypomorphic Med30 mouse mutant is ameliorated by ketogenic diet. Proc Natl Acad Sci USA, 2011, 108(49):19678-19682.
doi: 10.1073/pnas.1117835108 |
[11] |
Malik S, Roeder RG. Transcriptional regulation through mediator-like coactivators in yeast and metazoan cells. Trends Biochem Sci, 2000, 25(6):277-283.
pmid: 10838567 |
[12] |
Lee TI, Young RA. Transcription of eukaryotic protein- coding genes. Annu Rev Genet, 2000, 34:77-137.
pmid: 11092823 |
[13] |
Myers LC, Kornberg RD. Mediator of transcriptional regulation. Annu Rev Biochem, 2000, 69:729-749.
pmid: 10966474 |
[14] |
Kornberg RD. Mediator and the mechanism of transcriptional activation. Trends Biochem Sci, 2005, 30(5):235-239.
pmid: 15896740 |
[15] |
Cevher MA, Shi Y, Li D, Chait BT, Malik S, Roeder RG. Reconstitution of active human core mediator complex reveals a critical role of the MED14 subunit. Nat Struct Mol Biol, 2014, 21(12):1028-1034.
doi: 10.1038/nsmb.2914 pmid: 25383669 |
[16] |
Plaschka C, Larivière L, Wenzeck L, Seizl M, Hemann M, Tegunov D, Petrotchenko EV, Borchers CH, Baumeister W, Herzog F, Villa E, Cramer P. Architecture of the RNA polymerase II-mediator core initiation complex. Nature, 2015, 518(7539):376-380.
doi: 10.1038/nature14229 |
[17] |
Lariviere L, Plaschka C, Seizl M, Wenzeck L, Kurth F, Cramer P. Structure of the mediator head module. Nature, 2012, 492(7429):448-451.
doi: 10.1038/nature11670 |
[18] |
Tsai KL, Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, Asturias FJ. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex. Cell, 2014, 157(6):1430-1444.
doi: 10.1016/j.cell.2014.05.015 |
[19] |
Sato S, Tomomori-Sato C, Tsai KL, Yu XD, Sardiu M, Saraf A, Washburn MP, Florens L, Asturias FJ, Conaway RC, Conaway JW. Role for the MED21-MED7 hinge in assembly of the mediator-RNA polymerase II holoenzyme. J Biol Chem, 2016, 291(52):26886-26898.
doi: 10.1074/jbc.M116.756098 |
[20] |
Zhao HY, Young N, Kalchschmidt J, Lieberman J, El Khattabi L, Casellas R, Asturias FJ. Structure of mammalian mediator complex reveals tail module architecture and interaction with a conserved core. Nat Commun, 2021, 12(1):1355.
doi: 10.1038/s41467-021-21601-w |
[21] | Malik S, Roeder RG. The metazoan mediator co- activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet, 2010, 11(11):761-772. |
[22] |
Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev, 2000, 14(20):2551-2569.
doi: 10.1101/gad.831000 |
[23] |
Soutourina J. Transcription regulation by the mediator complex. Nat Rev Mol Cell Biol, 2018, 19(4):262-274.
doi: 10.1038/nrm.2017.115 |
[24] |
Brzovic PS, Heikaus CC, Kisselev L, Vernon R, Herbig E, Pacheco D, Warfield L, Littlefield P, Baker D, Klevit RE, Hahn S. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Mol Cell, 2011, 44(6):942-953.
doi: 10.1016/j.molcel.2011.11.008 pmid: 22195967 |
[25] |
Vojnic E, Mourão A, Seizl M, Simon B, Wenzeck L, Larivière L, Baumli S, Baumgart K, Meisterernst M, Sattler M, Cramer P. Structure and VP16 binding of the mediator Med25 activator interaction domain. Nat Struct Mol Biol, 2011, 18(4):404-409.
doi: 10.1038/nsmb.1997 pmid: 21378965 |
[26] |
Soutourina J, Wydau S, Ambroise Y, Boschiero C, Werner M. Direct interaction of RNA polymerase II and mediator required for transcription in vivo. Science, 2011, 331(6023):1451-1454.
doi: 10.1126/science.1200188 pmid: 21415355 |
[27] |
Bernecky C, Grob P, Ebmeier CC, Nogales E, Taatjes DJ. Molecular architecture of the human mediator-RNA polymerase II-TFIIF assembly. PLoS Biol, 2011, 9(3):e1000603.
doi: 10.1371/journal.pbio.1000603 |
[28] |
Kremer SB, Kim S, Jeon JO, Moustafa YW, Chen A, Zhao J, Gross DS. Role of mediator in regulating pol II elongation and nucleosome displacement in Saccharomyces cerevisiae. Genetics, 2012, 191(1):95-106.
doi: 10.1534/genetics.111.135806 |
[29] |
Takahashi H, Parmely TJ, Sato S, Tomomori-Sato C, Banks CAS, Kong SE, Szutorisz H, Swanson SK, Martin-Brown S, Washburn MP, Florens L, Seidel CW, Lin CQ, Smith ER, Shilatifard A, Conaway RC, Conaway JW. Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell, 2011, 146(1):92-104.
doi: 10.1016/j.cell.2011.06.005 pmid: 21729782 |
[30] |
Donner AJ, Ebmeier CC, Taatjes DJ, Espinosa JM. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol, 2010, 17(2):194-201.
doi: 10.1038/nsmb.1752 pmid: 20098423 |
[31] |
Mukundan B, Ansari A. Novel role for mediator complex subunit Srb5/Med18 in termination of transcription. J Biol Chem, 2011, 286(43):37053-37057.
doi: 10.1074/jbc.C111.295915 |
[32] |
Huang Y, Li WC, Yao X, Lin QJ, Yin JW, Liang Y, Heiner M, Tian B, Hui JY, Wang G. Mediator complex regulates alternative mRNA processing via the MED23 subunit. Mol Cell, 2012, 45(4):459-469.
doi: 10.1016/j.molcel.2011.12.022 pmid: 22264826 |
[33] |
Khorosjutina O, Wanrooij PH, Walfridsson J, Szilagyi Z, Zhu XF, Baraznenok V, Ekwall K, Gustafsson CM. A chromatin-remodeling protein is a component of fission yeast mediator. J Biol Chem, 2010, 285(39):29729-29737.
doi: 10.1074/jbc.M110.153858 pmid: 20622008 |
[34] |
Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA. Mediator and cohesin connect gene expression and chromatin architecture. Nature, 2010, 467(7314):430-435.
doi: 10.1038/nature09380 |
[35] |
Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol, 2019, 15(6):327-345.
doi: 10.1038/s41581-019-0135-6 |
[36] |
Harper TM, Taatjes DJ. The complex structure and function of mediator. J Biol Chem, 2018, 293(36):13778-13785.
doi: 10.1074/jbc.R117.794438 |
[37] |
Ito M, Okano HJ, Darnell RB, Roeder RG. The TRAP100 component of the TRAP/mediator complex is essential in broad transcriptional events and development. EMBO J, 2002, 21(13):3464-3475.
doi: 10.1093/emboj/cdf348 |
[38] |
Ito M, Yuan CX, Okano HJ, Darnell RB, Roeder RG. Involvement of the TRAP220 component of the TRAP/ SMCC coactivator complex in embryonic development and thyroid hormone action. Mol Cell, 2000, 5(4):683-693.
pmid: 10882104 |
[39] |
Stevens JL, Cantin GT, Wang G, Shevchenko A, Shevchenko A, Berk AJ. Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit. Science, 2002, 296(5568):755-758.
doi: 10.1126/science.1068943 |
[40] |
Tudor M, Murray PJ, Onufryk C, Jaenisch R, Young RA. Ubiquitous expression and embryonic requirement for RNA polymerase II coactivator subunit Srb7 in mice. Genes Dev, 1999, 13(18):2365-2368.
doi: 10.1101/gad.13.18.2365 |
[41] |
Westerling T, Kuuluvainen E, Makela TP. Cdk8 is essential for preimplantation mouse development. Mol Cell Biol, 2007, 27(17):6177-6182.
pmid: 17620419 |
[42] |
Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA. Dissecting the regulatory circuitry of a eukaryotic genome. Cell, 1998, 95(5):717-728.
pmid: 9845373 |
[43] |
Eychenne T, Novikova E, Barrault MB, Alibert O, Boschiero C, Peixeiro N, Cornu D, Redeker V, Kuras L, Nicolas P, Werner M, Soutourina J. Functional interplay between mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture. Genes Dev, 2016, 30(18):2119-2132.
doi: 10.1101/gad.285775.116 |
[44] |
Eyboulet F, Wydau-Dematteis S, Eychenne T, Alibert O, Neil H, Boschiero C, Nevers MC, Volland H, Cornu D, Redeker V, Werner M, Soutourina J. Mediator independently orchestrates multiple steps of preinitiation complex assembly in vivo. Nucleic Acids Res, 2015, 43(19):9214-9231.
doi: 10.1093/nar/gkv782 pmid: 26240385 |
[45] |
Thompson CM, Young RA. General requirement for RNA polymerase II holoenzymes in vivo. Proc Natl Acad Sci USA, 1995, 92(10):4587-4590.
doi: 10.1073/pnas.92.10.4587 |
[46] |
Schneider M, Hellerschmied D, Schubert T, Amlacher S, Vinayachandran V, Reja R, Pugh BF, Clausen T, Köhler A. The nuclear pore-associated TREX-2 complex employs mediator to regulate gene expression. Cell, 2015, 162(5):1016-1028.
doi: 10.1016/j.cell.2015.07.059 pmid: 26317468 |
[47] |
Schubert T, Kohler A. Mediator and TREX-2: emerging links between transcription initiation and mRNA export. Nucleus, 2016, 7(2):126-131.
doi: 10.1080/19491034.2016.1169352 pmid: 27028218 |
[48] |
Ibarra A, Hetzer MW. Nuclear pore proteins and the control of genome functions. Genes Dev, 2015, 29(4):337-349.
doi: 10.1101/gad.256495.114 |
[49] |
Cabal GG, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O, Lesne A, Buc H, Feuerbach-Fournier F, Olivo-Marin JC, Hurt EC, Nehrbass U. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature, 2006, 441(7094):770-773.
doi: 10.1038/nature04752 |
[50] |
Gallardo M, Luna R, Erdjument-Bromage H, Tempst P, Aguilera A. Nab2p and the Thp1p-Sac3p complex functionally interact at the interface between transcription and mRNA metabolism. J Biol Chem, 2003, 278(26):24225-24232.
doi: 10.1074/jbc.M302900200 |
[51] |
Jeronimo C, Robert F. Kin28 regulates the transient association of mediator with core promoters. Nat Struct Mol Biol, 2014, 21(5):449-455.
doi: 10.1038/nsmb.2810 pmid: 24704787 |
[52] |
Wong KH, Jin Y, Struhl K. TFIIH phosphorylation of the Pol II CTD stimulates mediator dissociation from the preinitiation complex and promoter escape. Mol Cell, 2014, 54(4):601-612.
doi: 10.1016/j.molcel.2014.03.024 |
[53] |
Akoulitchev S, Chuikov S, Reinberg D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature, 2000, 407(6800):102-106.
doi: 10.1038/35024111 |
[54] |
Venters BJ, Wachi S, Mavrich TN, Andersen BE, Jena P, Sinnamon AJ, Jain P, Rolleri NS, Jiang CZ, Hemeryck- Walsh C, Pugh BF. A comprehensive genomic binding map of gene and chromatin regulatory proteins in saccharomyces. Mol Cell, 2011, 41(4):480-492.
doi: 10.1016/j.molcel.2011.01.015 pmid: 21329885 |
[55] |
Köhler A, Schneider M, Cabal GG, Nehrbass U, Hurt E. Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nat Cell Biol, 2008, 10(6):707-715.
doi: 10.1038/ncb1733 pmid: 18488019 |
[56] |
Zhou MG, Wang HD, Zhu J, Chen WQ, Wang LH, Liu SW, Li YC, Wang LJ, Liu YN, Yin P, Liu JM, Yu SC, Tan F, Barber RM, Coates MM, Dicker D, Fraser M, González-Medina D, Hamavid H, Hao YT, Hu GQ, Jiang GH, Kan HD, Lopez AD, Phillips MR, She J, Vos T, Wan X, Xu GL, Yan LL, Yu CH, Zhao Y, Zheng YF, Zou XN, Naghavi M, Wang Y, Murray CJL, Yang GH, Liang XF. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the global burden of disease study 2013. Lancet, 2016, 387(10015):251-272.
doi: 10.1016/S0140-6736(15)00551-6 |
[57] | The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases burden in china: an updated summary of 2020. Chinese Circulation Journal, 2021, 36:521-545. |
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要. 中国循环, 2021, 36:521-545. | |
[58] |
Bouma BJ, Mulder BJ. Changing landscape of congenital heart disease. Circ Res, 2017, 120(6):908-922.
doi: 10.1161/CIRCRESAHA.116.309302 |
[59] |
Landles C, Chalk S, Steel JH, Rosewell I, Spencer-Dene B, Lalani EN, Parker MG. The thyroid hormone receptor-associated protein TRAP220 is required at distinct embryonic stages in placental, cardiac, and hepatic development. Mol Endocrinol, 2003, 17(12):2418-2435.
doi: 10.1210/me.2003-0097 |
[60] |
Rocha PP, Scholze M, Bleiss W, Schrewe H. Med12 is essential for early mouse development and for canonical Wnt and Wnt/PCP signaling. Development, 2010, 137(16):2723-2731.
doi: 10.1242/dev.053660 |
[61] |
Minerath RA, Dewey CM, Hall DD, Grueter CE. Regulation of cardiac transcription by thyroid hormone and Med13. J Mol Cell Cardiol, 2019, 129:27-38.
doi: S0022-2828(18)30833-2 pmid: 30769017 |
[62] |
Asadollahi R, Oneda B, Sheth F, Azzarello-Burri S, Baldinger R, Joset P, Latal B, Knirsch W, Desai S, Baumer A, Houge G, Andrieux J, Rauch A. Dosage changes of MED13L further delineate its role in congenital heart defects and intellectual disability. Eur J Hum Genet, 2013, 21(10):1100-1104.
doi: 10.1038/ejhg.2013.17 pmid: 23403903 |
[63] |
Chen CP, Chen YY, Chern SR, Wu PS, Su JW, Chen YT, Chen LF, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of de novo partial trisomy 12q (12q24.21→qter) and partial monosomy 6q (6q27→qter) associated with coarctation of the aorta, ventriculomegaly and thickened nuchal fold. Gene, 2013, 516(1):138-142.
doi: 10.1016/j.gene.2012.12.051 |
[64] |
Kobrynski LJ, Sullivan KE. Velocardiofacial syndrome, Digeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet, 2007, 370(9596):1443-1452.
pmid: 17950858 |
[65] |
Shprintzen RJ. Velo-cardio-facial syndrome: 30 years of study. Dev Disabil Res Rev, 2008, 14(1):3-10.
doi: 10.1002/ddrr.2 pmid: 18636631 |
[66] |
Yin JW, Liang Y, Park JY, Chen DR, Yao X, Xiao Q, Liu Z, Jiang B, Fu Y, Bao MH, Huang Y, Liu YT, Yan J, Zhu MS, Yang ZZ, Gao PJ, Tian B, Li DS, Wang G. Mediator MED23 plays opposing roles in directing smooth muscle cell and adipocyte differentiation. Genes Dev, 2012, 26(19):2192-2205.
doi: 10.1101/gad.192666.112 |
[67] |
Basel-Vanagaite L, Smirin-Yosef P, Essakow JL, Tzur S, Lagovsky I, Maya I, Pasmanik-Chor M, Yeheskel A, Konen O, Orenstein N, Weisz Hubshman M, Drasinover V, Magal N, Peretz Amit G, Zalzstein Y, Zeharia A, Shohat M, Straussberg R, Monté D, Salmon-Divon M, Behar DM. Homozygous MED25 mutation implicated in eye-intellectual disability syndrome. Hum Genet, 2015, 134(6):577-587.
doi: 10.1007/s00439-015-1541-x pmid: 25792360 |
[68] |
Fosslien E. Review: mitochondrial medicine--cardiomyopathy caused by defective oxidative phosphorylation. Ann Clin Lab Sci, 2003, 33(4):371-395.
pmid: 14584751 |
[69] |
Hall DD, Ponce JM, Chen BY, Spitler KM, Alexia A, Oudit GY, Song LS, Grueter CE. Ectopic expression of CDK8 induces eccentric hypertrophy and heart failure. JCI Insight, 2017, 2(15):e92476.
doi: 10.1172/jci.insight.92476 |
[70] | Baskin KK, Makarewich CA, DeLeon SM, Ye W, Chen BB, Beetz N, Schrewe H, Bassel-Duby R, Olson EN. MED12 regulates a transcriptional network of calcium-handling genes in the heart. JCI Insight, 2017, 2(14). |
[71] |
Segert J, Schneider I, Berger IM, Rottbauer W, Just S. Mediator complex subunit Med12 regulates cardiac jelly development and AV valve formation in zebrafish. Prog Biophys Mol Biol, 2018, 138:20-31.
doi: 10.1016/j.pbiomolbio.2018.07.010 |
[72] |
Muncke N, Jung C, Rüdiger H, Ulmer H, Roeth R, Hubert A, Goldmuntz E, Driscoll D, Goodship J, Schön K, Rappold G. Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation, 2003, 108(23):2843-2850.
pmid: 14638541 |
[73] |
Yang FJ, Vought BW, Satterlee JS, Walker AK, Jim Sun ZY, Watts JL, DeBeaumont R, Saito RM, Hyberts SG, Yang SS, Macol C, Iyer L, Tjian R, van den Heuvel S, Hart AC, Wagner G, Näär AM. An ARC/mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 2006, 442(7103):700-704.
doi: 10.1038/nature04942 |
[74] |
Kato Y, Habas R, Katsuyama Y, Näär AM, He X. A component of the ARC/mediator complex required for TGF beta/Nodal signalling. Nature, 2002, 418(6898):641-646.
doi: 10.1038/nature00969 |
[75] |
Spaeth JM, Kim NH, Boyer TG. Mediator and human disease. Semin Cell Dev Biol, 2011, 22(7):776-787.
doi: 10.1016/j.semcdb.2011.07.024 pmid: 21840410 |
[76] |
Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol Cell, 2003, 12(5):1137-1149.
pmid: 14636573 |
[77] |
Yuan CX, Ito M, Fondell JD, Fu ZY, Roeder RG. The TRAP220 component of a thyroid hormone receptor- associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc Natl Acad Sci USA, 1998, 95(14):7939-7944.
doi: 10.1073/pnas.95.14.7939 |
[78] |
Matsumoto K, Yu ST, Jia YZ, Ahmed MR, Viswakarma N, Sarkar J, Kashireddy PV, Rao MS, Karpus W, Gonzalez FJ, Reddy JK. Critical role for transcription coactivator peroxisome proliferator-activated receptor (PPAR)-binding protein/TRAP220 in liver regeneration and PPARalpha ligand-induced liver tumor development. J Biol Chem, 2007, 282(23):17053-17060.
doi: 10.1074/jbc.M701956200 pmid: 17438330 |
[79] |
Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi XX, Gautron L, Elmquist JK, Bassel-Duby R, Olson EN. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell, 2012, 149(3):671-683.
doi: 10.1016/j.cell.2012.03.029 pmid: 22541436 |
[80] |
Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM. A PGC1-α- dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 2012, 481(7382):463-468.
doi: 10.1038/nature10777 |
[81] |
Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang ZY, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell, 2007, 130(3):456-469.
doi: 10.1016/j.cell.2007.05.047 |
[82] |
Carvajal K, Moreno-Sánchez R. Heart metabolic disturbances in cardiovascular diseases. Arch Med Res, 2003, 34(2):89-99.
pmid: 12700003 |
[83] |
Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res, 2004, 95(6):568-578.
doi: 10.1161/01.RES.0000141774.29937.e3 |
[84] |
Rider OJ, Francis JM, Ali MK, Holloway C, Pegg T, Robson MD, Tyler D, Byrne J, Clarke K, Neubauer S. Effects of catecholamine stress on diastolic function and myocardial energetics in obesity. Circulation, 2012, 125(12):1511-1519.
doi: 10.1161/CIRCULATIONAHA.111.069518 |
[85] |
Taubert S, Van Gilst MR, Hansen M, Yamamoto KR. A mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. Elegans. Genes Dev, 2006, 20(9):1137-1149.
doi: 10.1101/gad.1395406 |
[86] |
Bers DM. Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu Rev Physiol, 2014, 76:107-127.
doi: 10.1146/annurev-physiol-020911-153308 |
[87] |
Marks AR. Calcium cycling proteins and heart failure: mechanisms and therapeutics. J Clin Invest, 2013, 123(1):46-52.
doi: 10.1172/JCI62834 |
[88] |
Gorski PA, Ceholski DK, Hajjar RJ. Altered myocardial calcium cycling and energetics in heart failure--a rational approach for disease treatment. Cell Metab, 2015, 21(2):183-194.
doi: 10.1016/j.cmet.2015.01.005 |
[89] |
Wang WY, Guan HX, Fang W, Zhang K, Gerdes AM, Iervasi G, Tang YD. Free triiodothyronine level correlates with myocardial injury and prognosis in idiopathic dilated cardiomyopathy: Evidence from cardiac MRI and SPECT/PET imaging. Sci Rep, 2016, 6:39811.
doi: 10.1038/srep39811 |
[90] |
Mitchell JE, Hellkamp AS, Mark DB, Anderson J, Johnson GW, Poole JE, Lee KL, Bardy GH. Thyroid function in heart failure and impact on mortality. JACC Heart Fail, 2013, 1(1):48-55.
doi: 10.1016/j.jchf.2012.10.004 |
[91] |
Freedberg AS, Papp JG, Williams EM. The effect of altered thyroid state on atrial intracellular potentials. J Physiol, 1970, 207(2):357-369.
doi: 10.1113/jphysiol.1970.sp009066 |
[92] |
Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev, 2005, 26(5):704-728.
doi: 10.1210/er.2003-0033 |
[93] |
Wang W, Huang L, Huang Y, Yin JW, Berk AJ, Friedman JM, Wang G. Mediator MED23 links insulin signaling to the adipogenesis transcription cascade. Dev Cell, 2009, 16(5):764-771.
doi: 10.1016/j.devcel.2009.04.006 pmid: 19460352 |
[94] |
Chen W, Zhang XT, Birsoy K, Roeder RG. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism. Proc Natl Acad Sci USA, 2010, 107(22):10196-10201.
doi: 10.1073/pnas.1005626107 |
[95] |
Sano M, Abdellatif M, Oh H, Xie M, Bagella L, Giordano A, Michael LH, DeMayo FJ, Schneider MD. Activation and function of cyclin t-Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. Nat Med, 2002, 8(11):1310-1317.
doi: 10.1038/nm778 |
[96] |
Sano M, Wang SC, Shirai M, Scaglia F, Xie M, Sakai S, Tanaka T, Kulkarni PA, Barger PM, Youker KA, Taffet GE, Hamamori Y, Michael LH, Craigen WJ, Schneider MD. Activation of cardiac CDK9 represses PGC-1 and confers a predisposition to heart failure. EMBO J, 2004, 23(17):3559-3569.
doi: 10.1038/sj.emboj.7600351 |
[97] |
Snijders Blok L, Hiatt SM, Bowling KM, Prokop JW, Engel KL, Cochran JN, Bebin EM, Bijlsma EK, Ruivenkamp CAL, Terhal P, Simon MEH, Smith R, Hurst JA, study DDD, McLaughlin H, Person R, Crunk A, Wangler MF, Streff H, Symonds JD, Zuberi SM, Elliott KS, Sanders VR, Masunga A, Hopkin RJ, Dubbs HA, Ortiz-Gonzalez XR, Pfundt R, Brunner HG, Fisher SE, Kleefstra T, Cooper GM. De novo mutations in MED13, a component of the mediator complex, are associated with a novel neurodevelopmental disorder. Hum Genet, 2018, 137(5):375-388.
doi: 10.1007/s00439-018-1887-y pmid: 29740699 |
[98] |
Kaufmann R, Straussberg R, Mandel H, Fattal-Valevski A, Ben-Zeev B, Naamati A, Shaag A, Zenvirt S, Konen O, Mimouni-Bloch A, Dobyns WB, Edvardson S, Pines O, Elpeleg O. Infantile cerebral and cerebellar atrophy is associated with a mutation in the MED17 subunit of the transcription preinitiation mediator complex. Am J Hum Genet, 2010, 87(5):667-670.
doi: 10.1016/j.ajhg.2010.09.016 pmid: 20950787 |
[99] |
Hashimoto S, Boissel S, Zarhrate M, Rio M, Munnich A, Egly JM, Colleaux L. MED23 mutation links intellectual disability to dysregulation of immediate early gene expression. Science, 2011, 333(6046):1161-1163.
doi: 10.1126/science.1206638 pmid: 21868677 |
[100] |
Leal A, Huehne K, Bauer F, Sticht H, Berger P, Suter U, Morera B, Del Valle G, Lupski JR, Ekici A, Pasutto F, Endele S, Barrantes R, Berghoff C, Berghoff M, Neundörfer B, Heuss D, Dorn T, Young P, Santolin L, Uhlmann T, Meisterernst M, Sereda MW, Sereda M, Stassart RM, Meyer zu Horste G, Nave KA, Reis A, Rautenstrauss B. Identification of the variant Ala335Val of MED25 as responsible for CMT2B2: molecular data, functional studies of the SH3 recognition motif and correlation between wild-type MED25 and PMP22 RNA levels in CMT1A animal models. Neurogenetics, 2009, 10(4):275-287.
doi: 10.1007/s10048-009-0183-3 |
[101] |
Meng LY, Isohanni P, Shao YR, Graham BH, Hickey SE, Brooks S, Suomalainen A, Joset P, Steindl K, Rauch A, Hackenberg A, High FA, Armstrong-Javors A, Mencacci NE, Gonzàlez-Latapi P, Kamel WA, Al-Hashel JY, Bustos BI, Hernandez AV, Krainc D, Lubbe SJ, Van Esch H, De Luca C, Ballon K, Ravelli C, Burglen L, Qebibo L, Calame DG, Mitani T, Marafi D, Pehlivan D, Saadi NW, Sahin Y, Maroofian R, Efthymiou S, Houlden H, Maqbool S, Rahman F, Gu S, Posey JE, Lupski JR, Hunter JV, Wangler MF, Carroll CJ, Yang YP. MED27 variants cause developmental delay, dystonia, and cerebellar hypoplasia. Ann Neurol, 2021, 89(4):828-833.
doi: 10.1002/ana.26019 |
[102] |
Mukhopadhyay A, Kramer JM, Merkx G, Lugtenberg D, Smeets DF, Oortveld MA, Blokland EAW, Agrawal J, Schenck A, van Bokhoven H, Huys E, Schoenmakers EF, van Kessel AG, van Nouhuys CE, Cremers FPM. CDK19 is disrupted in a female patient with bilateral congenital retinal folds, microcephaly and mild mental retardation. Hum Genet, 2010, 128(3):281-291.
doi: 10.1007/s00439-010-0848-x pmid: 20563892 |
[103] |
Ueberham U, Hessel A, Arendt T. Cyclin C expression is involved in the pathogenesis of Alzheimer's disease. Neurobiol Aging, 2003, 24(3):427-435.
pmid: 12600719 |
[104] |
Tang WS, Weng L, Wang X, Liu CQ, Hu GS, Yin ST, Tao Y, Hong NN, Guo HL, Liu W, Wang HR, Zhao TJ. The mediator subunit MED20 organizes the early adipogenic complex to promote development of adipose tissues and diet-induced obesity. Cell Rep, 2021, 36(1):109314.
doi: 10.1016/j.celrep.2021.109314 |
[105] |
Zhu Y, Qi C, Jain S, Le Beau MM, Espinosa R,3rd, Atkins GB, Lazar MA, Yeldandi AV, Rao MS, Reddy JK. Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/ PPARBP) gene in breast cancer. Proc Natl Acad Sci USA, 1999, 96(19):10848-10853.
doi: 10.1073/pnas.96.19.10848 |
[106] |
Gao HW, Bai PR, Xiao L, Shen MJ, Yu QX, Lei YY, Huang WT, Lin X, Zheng XY, Wei T, Jiang Y, Ye F, Bu H. Mediator complex subunit 16 is down-regulated in papillary thyroid cancer, leading to increased transforming growth factor-β signaling and radioiodine resistance. J Biol Chem, 2020, 295(31):10726-10740.
doi: 10.1074/jbc.RA119.012404 |
[107] |
Zhang H, Jiang HW, Wang W, Gong J, Zhang LM, Chen ZQ, Ding Q. Expression of Med19 in bladder cancer tissues and its role on bladder cancer cell growth. Urol Oncol, 2012, 30(6):920-927.
doi: 10.1016/j.urolonc.2010.10.003 pmid: 21478038 |
[108] |
Xu Y, Sun Y, Shen H, Dai YL, Liu HF, Li RH, Zhang HD, Wu LG, Zhu XY, Liu XL. Regulation of the terminal maturation of iNKT cells by mediator complex subunit 23. Nat Commun, 2018, 9(1):3875.
doi: 10.1038/s41467-018-06372-1 |
[109] |
Yoon NK, Maresh EL, Elshimali Y, Li A, Horvath S, Seligson DB, Chia D, Goodglick L. Elevated MED28 expression predicts poor outcome in women with breast cancer. BMC Cancer, 2010, 10:335.
doi: 10.1186/1471-2407-10-335 pmid: 20584319 |
[110] |
Kuuselo R, Savinainen K, Sandström S, Autio R, Kallioniemi A. Med29, a component of the mediator complex, possesses both oncogenic and tumor suppressive characteristics in pancreatic cancer. Int J Cancer, 2011, 129(11):2553-2565.
doi: 10.1002/ijc.25924 pmid: 21225629 |
[111] |
Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I, Freed E, Ligon AH, Vena N, Ogino S, Chheda MG, Tamayo P, Finn S, Shrestha Y, Boehm JS, Jain S, Bojarski E, Mermel C, Barretina J, Chan JA, Baselga J, Tabernero J, Root DE, Fuchs CS, Loda M, Shivdasani RA, Meyerson M, Hahn WC. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature, 2008, 455(7212):547-551.
doi: 10.1038/nature07179 |
[112] | Schiano C, Casamassimi A, Rienzo M, de Nigris F, Sommese L, Napoli C. Involvement of mediator complex in malignancy. Biochim Biophys Acta, 2014, 1845(1):66-83. |
[113] |
Poss ZC, Ebmeier CC, Taatjes DJ. The mediator complex and transcription regulation. Crit Rev Biochem Mol Biol, 2013, 48(6):575-608.
doi: 10.3109/10409238.2013.840259 |
[114] | Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol, 2015, 50(5):393-426. |
[115] |
Schneider EV, Bottcher J, Huber R, Maskos K, Neumann L. Structure-kinetic relationship study of CDK8/Cycc specific compounds. Proc Natl Acad Sci USA, 2013, 110(20):8081-8086.
doi: 10.1073/pnas.1305378110 |
[116] |
Porter DC, Farmaki E, Altilia S, Schools GP, West DK, Chen MQ, Chang BD, Puzyrev AT, Lim CU, Rokow- Kittell R, Friedhoff LT, Papavassiliou AG, Kalurupalle S, Hurteau G, Shi J, Baran PS, Gyorffy B, Wentland MP, Broude EV, Kiaris H, Roninson IB. Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities. Proc Natl Acad Sci USA, 2012, 109(34):13799-13804.
doi: 10.1073/pnas.1206906109 |
[117] |
Kaur M, Velmurugan B, Tyagi A, Agarwal C, Singh RP, Agarwal R. Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of beta-catenin- dependent signaling. Neoplasia, 2010, 12(5):415-424.
doi: 10.1593/neo.10188 |
[118] |
Guerzoni C, Amatori S, Giorgi L, Manara MC, Landuzzi L, Lollini PL, Tassoni A, Balducci M, Manfrini M, Pratelli L, Serra M, Picci P, Magnani M, Fusi V, Fanelli M, Scotlandi K. An aza-macrocycle containing maltolic side-arms (maltonis) as potential drug against human pediatric sarcomas. BMC Cancer, 2014, 14:137.
doi: 10.1186/1471-2407-14-137 pmid: 24575739 |
[119] |
He LC, Lu N, Dai QS, Zhao Y, Zhao L, Wang H, Li ZY, You QD, Guo QL. Wogonin induced G1 cell cycle arrest by regulating Wnt/β-catenin signaling pathway and inactivating CDK8 in human colorectal cancer carcinoma cells. Toxicology, 2013, 312:36-47.
doi: 10.1016/j.tox.2013.07.013 |
[120] |
Verlinden L, Verstuyf A, Van Camp M, Marcelis S, Sabbe K, Zhao XY, De Clercq P, Vandewalle M, Bouillon R. Two novel 14-Epi-analogues of 1,25-dihydroxyvitamin D3 inhibit the growth of human breast cancer cells in vitro andin vivo. Cancer Res, 2000, 60(10):2673-2679.
pmid: 10825140 |
[121] |
Burnett JC, Rossi JJ. RNA-based therapeutics: current progress and future prospects. Chem Biol, 2012, 19(1):60-71.
doi: 10.1016/j.chembiol.2011.12.008 |
[122] | Li XY, Luo QF, Wei CK, Li DF, Li J, Fang L. MiRNA-107 inhibits proliferation and migration by targeting CDK8 in breast cancer. Int J Clin Exp Med, 2014, 7(1):32-40. |
[123] | Li J, Li XY, Kong XJ, Luo QF, Zhang JF, Fang L. MiRNA-26b inhibits cellular proliferation by targeting CDK8 in breast cancer. Int J Clin Exp Med, 2014, 7(3):558-565. |
[124] |
Rajender PS, Vasavi M, Vuruputuri U. Identification of novel selective antagonists for cyclin C by homology modeling and virtual screening. Int J Biol Macromol, 2011, 48(2):292-300.
doi: 10.1016/j.ijbiomac.2010.11.015 pmid: 21138743 |
[125] |
Hoeppner S, Baumli S, Cramer P. Structure of the mediator subunit cyclin C and its implications for CDK8 function. J Mol Biol, 2005, 350(5):833-842.
pmid: 15979093 |
[126] |
Schneider EV, Böttcher J, Blaesse M, Neumann L, Huber R, Maskos K. The structure of CDK8/Cycc implicates specificity in the CDK/cyclin family and reveals interaction with a deep pocket binder. J Mol Biol, 2011, 412(2):251-266.
doi: 10.1016/j.jmb.2011.07.020 pmid: 21806996 |
[127] |
Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 2013, 153(2):320-334.
doi: 10.1016/j.cell.2013.03.036 |
[128] |
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell, 2013, 153(2):307-319.
doi: 10.1016/j.cell.2013.03.035 |
[129] |
Cheung HW, Cowley GS, Weir BA, Boehm JS, Rusin S, Scott JA, East A, Ali LD, Lizotte PH, Wong TC, Jiang GZ, Hsiao J, Mermel CH, Getz G, Barretina J, Gopal S, Tamayo P, Gould J, Tsherniak A, Stransky N, Luo B, Ren Y, Drapkin R, Bhatia SN, Mesirov JP, Garraway LA, Meyerson M, Lander ES, Root DE, Hahn WC. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc Natl Acad Sci USA, 2011, 108(30):12372-12377.
doi: 10.1073/pnas.1109363108 |
[130] |
Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop JM, Felsher DW. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science, 2002, 297(5578):102-104.
doi: 10.1126/science.1071489 |
[131] |
Weinstein IB. Cancer. Addiction to oncogenes-the Achilles heal of cancer. Science, 2002, 297(5578):63-64.
pmid: 12098689 |
[132] |
Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA, Young RA. Super-enhancers in the control of cell identity and disease. Cell, 2013, 155(4):934-947.
doi: 10.1016/j.cell.2013.09.053 |
[133] |
He XJ, Tan CL, Wang F, Wang YF, Zhou R, Cui DX, You WX, Zhao H, Ren JW, Feng B. Knock-in of large reporter genes in human cells via CRISPR/Cas9- induced homology-dependent and independent DNA repair. Nucleic Acids Res, 2016, 44(9):e85.
doi: 10.1093/nar/gkw064 |
[134] |
Platt RJ, Chen SD, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng GP, Sharp PA, Zhang F. CRISPR-Cas knockin mice for genome editing and cancer modeling. Cell, 2014, 159(2):440-455.
doi: 10.1016/j.cell.2014.09.014 |
[135] |
Devkota S. The road less traveled: strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis. BMB Rep, 2018, 51(9):437-443.
pmid: 30103848 |
[136] |
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou SB, Diaz Jr LA, Kinzler KW. Cancer genome landscapes. Science, 2013, 339(6127):1546-1558.
doi: 10.1126/science.1235122 pmid: 23539594 |
[137] |
Moustaqil M, Gambin Y, Sierecki E. Biophysical techniques for target validation and drug discovery in transcription-targeted therapy. Int J Mol Sci, 2020, 21(7):2301.
doi: 10.3390/ijms21072301 |
[1] | 王承贤, 容益康, 崔敏. 果蝇限制端粒转座子的分子机制[J]. 遗传, 2023, 45(3): 221-228. |
[2] | 吴丹丹, 朱明昆, 方忠艳, 马伟. 植物B染色体的分子结构组成及遗传机制研究进展[J]. 遗传, 2022, 44(9): 772-782. |
[3] | 刘国芳, 任沛东, 叶文新, 陆光涛. 十字花科黑腐病菌中转录因子HpaR1与Clp调控一个糖苷水解酶基因表达的分析[J]. 遗传, 2021, 43(9): 910-920. |
[4] | 王天一, 王应祥, 尤辰江. 植物PHD结构域蛋白的结构与功能特性[J]. 遗传, 2021, 43(4): 323-339. |
[5] | 刘国芳, 王欣欣, 苏辉昭, 陆光涛. 细菌GntR家族转录调控因子的研究进展[J]. 遗传, 2021, 43(1): 66-73. |
[6] | 邱晓芬, 汤冬娥, 虞海燕, 廖秋燕, 胡芷洋, 周俊, 赵鑫, 何慧燕, 梁灼健, 许承明, 杨明, 戴勇. 基于单细胞ATAC测序技术对18-三体综合征染色质开放性区域转录因子的分析[J]. 遗传, 2021, 43(1): 74-83. |
[7] | 任恋, 吴秀山, 李永青. 组蛋白去乙酰化酶在调节心肌肥大过程中的作用机制[J]. 遗传, 2020, 42(6): 536-547. |
[8] | 陈敏, 张峥, 孟紫媛, 张学军. ATAC-seq在复杂疾病研究中的应用进展[J]. 遗传, 2020, 42(4): 347-353. |
[9] | 高晓萌, 张治华. 生物大分子“液-液相分离”调控染色质三维空间结构和功能[J]. 遗传, 2020, 42(1): 45-56. |
[10] | 张雨, 方玉达. Cohesin结构及功能研究进展[J]. 遗传, 2020, 42(1): 57-72. |
[11] | 郑晓飞,黄海燕,吴强. 染色质架构蛋白CTCF调控UGT1基因簇的表达[J]. 遗传, 2019, 41(6): 509-523. |
[12] | 刘振宁, 袁黎, VenkatesanSundaresan, 余小林. 拟南芥CKI1基因上游转录调控因子筛选及鉴定[J]. 遗传, 2019, 41(5): 430-438. |
[13] | 程敏, 张文建, 邢天宇, 闫晓红, 李玉茂, 李辉, 王宁. 鸡miR-17-92基因簇上游调控区功能分析[J]. 遗传, 2016, 38(8): 724-735. |
[14] | 丁楠, 渠鸿竹, 方向东. ENCODE计划和功能基因组研究[J]. 遗传, 2014, 36(3): 237-247. |
[15] | 张俊芳 朱化彬 张留光 郝海生 赵学明 秦彤 路永强 王栋. 精子形成期基因转录表达的研究进展[J]. 遗传, 2013, 35(5): 587-594. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: