遗传 ›› 2024, Vol. 46 ›› Issue (12): 982-994.doi: 10.16288/j.yczz.24-244
收稿日期:
2024-08-21
修回日期:
2024-10-12
出版日期:
2024-12-20
发布日期:
2024-10-25
通讯作者:
张余,研究员,博士生导师,研究方向:基因转录结构生物学。E-mail: yzhang@cemps.ac.cn作者简介:
尤琳琳,2016—2022年就读于中国科学院分子植物科学卓越创新中心(植物生理生态研究所),在基因转录结构生物学研究组攻读博士学位。目前在美国罗格斯大学Waksman研究所进行博士后训练。在攻读博士学位和博士后训练期间,主要从事基因转录终止与转录调控的分子机制研究。利用结构生物学和生物化学等方法,解析了噬菌体蛋白和宿主RNA聚合酶的冷冻电镜结构,揭示了噬菌体蛋白通过拮抗转录终止调控自身基因的表达的分子机制(Nature Communications,2019);解析了致病菌中新型转录调控的分子机制(Nature Communications,2022);捕获了细菌自发转录终止的关键中间态冷冻电镜结构,还原了细菌自发转录终止的全过程(Nature,2023);解析了蓝细菌RNA聚合酶的结构和转录机制(PNAS,2023);解析了古菌因子依赖型转录终止分子机制,揭示了细菌、古菌、真核生物因子依赖型转录终止的基本统一性(Nature,2024)。这些工作回答了该领域的基础科学问题,拓展了人们对于基因表达机制的理解。博士论文《细菌自发转录终止与噬菌体蛋白抗终止的分子机制研究》荣获2023年中国科学院优秀博士生论文。博士,研究方向:基因转录终止与转录调控。E-mail: youlinlin2016@gmail.com
基金资助:
Linlin You1,2,3(), Yu Zhang1(
)
Received:
2024-08-21
Revised:
2024-10-12
Published:
2024-12-20
Online:
2024-10-25
Supported by:
摘要:
转录是遗传信息从DNA传递成RNA的过程,主要分为转录起始、转录延伸和转录终止3个阶段。转录终止是基因转录的最后一步,对基因表达的准确性至关重要。细菌的转录终止主要有两种形式:依赖于Rho因子的转录终止和固有转录终止(即不依赖于Rho因子的转录终止)。细菌转录终止过程受到细菌或噬菌体蛋白的正向和反向调控。本文主要总结了细菌转录终止机制和调控的研究进展,以期为进一步研究、理解转录终止过程提供理论基础。
尤琳琳, 张余. 细菌转录终止的分子机制研究进展[J]. 遗传, 2024, 46(12): 982-994.
Linlin You, Yu Zhang. Progress on molecular mechanisms of bacterial transcription termination[J]. Hereditas(Beijing), 2024, 46(12): 982-994.
[1] | Crick F. Central dogma of molecular biology. Nature, 1970, 227(5258): 561-563. |
[2] |
Chen J, Chiu C, Gopalkrishnan S, Chen AY, Olinares PDB, Saecker RM, Winkelman JT, Maloney MF, Chait BT, Ross W, Gourse RL, Campbell EA, Darst SA. Stepwise promoter melting by bacterial RNA polymerase. Mol Cell, 2020, 78(2): 275-288.e6.
doi: S1097-2765(20)30110-6 pmid: 32160514 |
[3] |
Feklistov A, Darst SA. Structural basis for promoter-10 element recognition by the bacterial RNA polymerase σ subunit. Cell, 2011, 147(6): 1257-1269.
doi: 10.1016/j.cell.2011.10.041 pmid: 22136875 |
[4] |
Campbell EA, Muzzin O, Chlenov M, Sun JL, Olson CA, Weinman O, Trester-Zedlitz ML, Darst SA. Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol Cell, 2002, 9(3): 527-539.
pmid: 11931761 |
[5] |
Ross W, Gosink KK, Salomon J, Igarashi K, Zou C, Ishihama A, Severinov K, Gourse RL. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science, 1993, 262(5138): 1407-1413.
doi: 10.1126/science.8248780 pmid: 8248780 |
[6] | Boyaci H, Chen J, Jansen R, Darst SA, Campbell EA. Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding. Nature, 2019, 565(7739): 382-385. |
[7] |
Chen J, Boyaci H, Campbell EA. Diverse and unified mechanisms of transcription initiation in bacteria. Nat Rev Microbiol, 2021, 19(2): 95-109.
doi: 10.1038/s41579-020-00450-2 pmid: 33122819 |
[8] |
Revyakin A, Liu CY, Ebright RH, Strick TR. Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science, 2006, 314(5802): 1139-1143.
doi: 10.1126/science.1131398 pmid: 17110577 |
[9] |
Li LT, Molodtsov V, Lin W, Ebright RH, Zhang Y. RNA extension drives a stepwise displacement of an initiation-factor structural module in initial transcription. Proc Natl Acad Sci USA, 2020, 117(11): 5801-5809.
doi: 10.1073/pnas.1920747117 pmid: 32127479 |
[10] | Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I. Structural basis for transcription elongation by bacterial RNA polymerase. Nature, 2007, 448(7150): 157-162. |
[11] | Landick R. The regulatory roles and mechanism of transcriptional pausing. Biochem Soc Trans, 2006, 34(6): 1062-1066. |
[12] |
Farnham PJ, Greenblatt J, Platt T. Effects of NusA protein on transcription termination in the tryptophan operon of Escherichia coli. Cell, 1982, 29(3): 945-951.
pmid: 6758952 |
[13] |
Schmidt MC, Chamberlin MJ. Nusa protein of Escherichia coli is an efficient transcription termination factor for certain terminator sites. J Mol Biol, 1987, 195(4): 809-818.
pmid: 2821282 |
[14] |
Yakhnin AV, Babitzke P. NusA-stimulated RNA polymerase pausing and termination participates in the Bacillus subtilis trp operon attenuation mechanism invitro. Proc Natl Acad Sci USA, 2002, 99(17): 11067-11072.
doi: 10.1073/pnas.162373299 pmid: 12161562 |
[15] |
Guo XY, Myasnikov AG, Chen J, Crucifix C, Papai G, Takacs M, Schultz P, Weixlbaumer A. Structural basis for NusA stabilized transcriptional pausing. Mol Cell, 2018, 69(5): 816-827.e4.
doi: S1097-2765(18)30106-0 pmid: 29499136 |
[16] |
You LL, Shi J, Shen LQ, Li LT, Fang CL, Yu CZ, Cheng WB, Feng Y, Zhang Y. Structural basis for transcription antitermination at bacterial intrinsic terminator. Nat Commun, 2019, 10(1): 3048.
doi: 10.1038/s41467-019-10955-x pmid: 31296855 |
[17] |
Krupp F, Said N, Huang YH, Loll B, Bürger J, Mielke T, Spahn CMT, Wahl MC. Structural basis for the action of an all-purpose transcription anti-termination factor. Mol Cell, 2019, 74(1): 143-157.e5.
doi: S1097-2765(19)30036-X pmid: 30795892 |
[18] |
Shi J, Gao X, Tian TG, Yu ZY, Gao B, Wen AJ, You LL, Chang SH, Zhang X, Zhang Y, Feng Y. Structural basis of Q-dependent transcription antitermination. Nat Commun, 2019, 10(1): 2925.
doi: 10.1038/s41467-019-10958-8 pmid: 31266960 |
[19] |
Yin Z, Kaelber JT, Ebright RH. Structural basis of Q-dependent antitermination. Proc Natl Acad Sci USA, 2019, 116(37): 18384-18390.
doi: 10.1073/pnas.1909801116 pmid: 31455742 |
[20] |
Ray-Soni A, Bellecourt MJ, Landick R. Mechanisms of bacterial transcription termination: all good things must end. Annu Rev Biochem, 2016, 85: 319-347.
doi: 10.1146/annurev-biochem-060815-014844 pmid: 27023849 |
[21] |
Santangelo TJ, Artsimovitch I. Termination and antitermination: RNA polymerase runs a stop sign. Nat Rev Microbiol, 2011, 9(5): 319-329.
doi: 10.1038/nrmicro2560 pmid: 21478900 |
[22] |
Roberts JW. Mechanisms of bacterial transcription termination. J Mol Biol, 2019, 431(20): 4030-4039.
doi: S0022-2836(19)30185-8 pmid: 30978344 |
[23] | Kang JY, Llewellyn E, Chen J, Olinares PDB, Brewer J, Chait BT, Campbell EA, Darst SA. Structural basis for transcription complex disruption by the Mfd translocase. eLife, 2021, 10: e62117. |
[24] |
Selby CP, Sancar A. Molecular mechanism of transcription- repair coupling. Science, 1993, 260(5104): 53-58.
doi: 10.1126/science.8465200 pmid: 8465200 |
[25] |
Shi J, Wen AJ, Zhao MX, Jin S, You LL, Shi Y, Dong SL, Hua XT, Zhang Y, Feng Y. Structural basis of Mfd-dependent transcription termination. Nucleic Acids Res, 2020, 48(20): 11762-11772.
doi: 10.1093/nar/gkaa904 pmid: 33068413 |
[26] |
Wang L, Watters JW, Ju XW, Lu GZ, Liu SX. Head-on and co-directional RNA polymerase collisions orchestrate bidirectional transcription termination. Mol Cell, 2023, 83(7): 1153-1164.e4.
doi: 10.1016/j.molcel.2023.02.017 pmid: 36917983 |
[27] | Roberts JW. Termination factor for RNA synthesis. Nature, 1969, 224(5225): 1168-1174. |
[28] | De Crombrugghe B, Adhya S, Gottesman M, Pastan I. Effect of Rho on transcription of bacterial operons. Nat New Biol, 1973, 241(113): 260-264. |
[29] |
Opperman T, Richardson JP. Phylogenetic analysis of sequences from diverse bacteria with homology to the Escherichia coli rho gene. J Bacteriol, 1994, 176(16): 5033-5043.
pmid: 8051015 |
[30] |
Grylak-Mielnicka A, Bidnenko V, Bardowski J, Bidnenko E. Transcription termination factor Rho: a hub linking diverse physiological processes in bacteria. Microbiology (Reading), 2016, 162(3): 433-447.
doi: 10.1099/mic.0.000244 pmid: 26796109 |
[31] | Riaz-Bradley A. Transcription in cyanobacteria: a distinctive machinery and putative mechanisms. Biochem Soc Trans, 2019, 47(2): 679-689. |
[32] | Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, Landick R. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev, 2012, 26(23): 2621-2633. |
[33] |
Richardson JP, Grimley C, Lowery C. Transcription termination factor rho activity is altered in Escherichia coli with suA gene mutations. Proc Natl Acad Sci USA, 1975, 72(5): 1725-1728.
pmid: 1098042 |
[34] | Cardinale CJ, Washburn RS, Tadigotla VR, Brown LM, Gottesman ME, Nudler E. Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science, 2008, 320(5878): 935-938. |
[35] |
Peters JM, Mooney RA, Kuan PF, Rowland JL, Keles S, Landick R. Rho directs widespread termination of intragenic and stable RNA transcription. Proc Natl Acad Sci USA, 2009, 106(36): 15406-15411.
doi: 10.1073/pnas.0903846106 pmid: 19706412 |
[36] | Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E. Linking RNA polymerase backtracking to genome instability in E. coli. Cell, 2011, 146(4): 533-543. |
[37] | Leela JK, Syeda AH, Anupama K, Gowrishankar J. Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli. Proc Natl Acad Sci USA, 2013, 110(1): 258-263. |
[38] |
Mitra P, Ghosh G, Hafeezunnisa M, Sen RJ. Rho protein: roles and mechanisms. Annu Rev Microbiol, 2017, 71: 687-709.
doi: 10.1146/annurev-micro-030117-020432 pmid: 28731845 |
[39] |
Geiselmann J, Seifried SE, Yager TD, Liang C, von Hippel PH. Physical properties of the Escherichia coli transcription termination factor rho. 2. Quaternary structure of the rho hexamer. Biochemistry, 1992, 31(1): 121-132.
pmid: 1370624 |
[40] |
Geiselmann J, Yager TD, Gill SC, Calmettes P, von Hippel PH. Physical properties of the Escherichia coli transcription termination factor rho. 1. Association states and geometry of the rho hexamer. Biochemistry, 1992, 31(1): 111-121.
pmid: 1370623 |
[41] |
Kang JY, Mooney RA, Nedialkov Y, Saba J, Mishanina TV, Artsimovitch I, Landick R, Darst SA. Structural basis for transcript elongation control by NusG family universal regulators. Cell, 2018, 173(7): 1650-1662.e14.
doi: S0092-8674(18)30594-4 pmid: 29887376 |
[42] |
Sullivan SL, Gottesman ME. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell, 1992, 68(5): 989-994.
pmid: 1547498 |
[43] |
Martinez-Rucobo FW, Sainsbury S, Cheung ACM, Cramer P. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J, 2011, 30(7): 1302-1310.
doi: 10.1038/emboj.2011.64 pmid: 21386817 |
[44] |
Lawson MR, Ma W, Bellecourt MJ, Artsimovitch I, Martin A, Landick R, Schulten K, Berger JM. Mechanism for the regulated control of bacterial transcription termination by a universal adaptor protein. Mol Cell, 2018, 71(6): 911-922.e4.
doi: S1097-2765(18)30583-5 pmid: 30122535 |
[45] |
Skordalakes E, Berger JM. Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell, 2003, 114(1): 135-146.
pmid: 12859904 |
[46] |
Thomsen ND, Berger JM. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell, 2009, 139(3): 523-534.
doi: 10.1016/j.cell.2009.08.043 pmid: 19879839 |
[47] | Molodtsov V, Wang CY, Firlar E, Kaelber JT, Ebright RH. Structural basis of Rho-dependent transcription termination. Nature, 2023, 614(7947): 367-374. |
[48] | Park JS, Roberts JW. Role of DNA bubble rewinding in enzymatic transcription termination. Proc Natl Acad Sci USA, 2006, 103(13): 4870-4875. |
[49] |
Richardson JP. Rho-dependent termination and ATPases in transcript termination. Biochim Biophys Acta, 2002, 1577(2): 251-260.
pmid: 12213656 |
[50] | Mooney RA, Davis SE, Peters JM, Rowland JL, Ansari AZ, Landick R. Regulator trafficking on bacterial transcription units in vivo. Mol Cell, 2009, 33(1): 97-108. |
[51] | Said N, Hilal T, Sunday ND, Khatri A, Burger J, Mielke T, Belogurov GA, Loll B, Sen R, Artsimovitch I, Wahl MC. Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase ρ. Science, 2021, 371(6524): eabd1673. |
[52] |
Hao ZT, Epshtein V, Kim KH, Proshkin S, Svetlov V, Kamarthapu V, Bharati B, Mironov A, Walz T, Nudler E. Pre-termination transcription complex: structure and function. Mol Cell, 2021, 81(2): 281-292.e8.
doi: 10.1016/j.molcel.2020.11.013 pmid: 33296676 |
[53] |
Gusarov I, Nudler E. The mechanism of intrinsic transcription termination. Mol Cell, 1999, 3(4): 495-504.
pmid: 10230402 |
[54] |
Yarnell WS, Roberts JW. Mechanism of intrinsic transcription termination and antitermination. Science, 1999, 284(5414): 611-615.
pmid: 10213678 |
[55] | You LL, Omollo EO, Yu CZ, Mooney RA, Shi J, Shen LQ, Wu XX, Wen AJ, He DW, Zeng Y, Feng Y, Landick R, Zhang Y. Structural basis for intrinsic transcription termination. Nature, 2023, 613(7945): 783-789. |
[56] |
Kang JY, Mishanina TV, Bellecourt MJ, Mooney RA, Darst SA, Landick R. RNA polymerase accommodates a pause RNA hairpin by global conformational rearrangements that prolong pausing. Mol Cell, 2018, 69(5): 802-815.e5.
doi: S1097-2765(18)30047-9 pmid: 29499135 |
[57] |
Santangelo TJ, Roberts JW. Forward translocation is the natural pathway of RNA release at an intrinsic terminator. Mol Cell, 2004, 14(1): 117-126.
pmid: 15068808 |
[58] |
Larson MH, Greenleaf WJ, Landick R, Block SM. Applied force reveals mechanistic and energetic details of transcription termination. Cell, 2008, 132(6): 971-982.
doi: 10.1016/j.cell.2008.01.027 pmid: 18358810 |
[59] |
Komissarova N, Becker J, Solter S, Kireeva M, Kashlev M. Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination. Mol Cell, 2002, 10(5): 1151-1162.
pmid: 12453422 |
[60] |
Epshtein V, Cardinale CJ, Ruckenstein AE, Borukhov S, Nudler E. An allosteric path to transcription termination. Mol Cell, 2007, 28(6): 991-1001.
pmid: 18158897 |
[61] |
Peters JM, Vangeloff AD, Landick R. Bacterial transcription terminators: the RNA 3'-end chronicles. J Mol Biol, 2011, 412(5): 793-813.
doi: 10.1016/j.jmb.2011.03.036 pmid: 21439297 |
[62] |
Kang W, Ha KS, Uhm H, Park K, Lee JY, Hohng S, Kang C. Transcription reinitiation by recycling RNA polymerase that diffuses on DNA after releasing terminated RNA. Nat Commun, 2020, 11(1): 450.
doi: 10.1038/s41467-019-14200-3 pmid: 31974350 |
[63] |
Harden TT, Herlambang KS, Chamberlain M, Lalanne JB, Wells CD, Li GW, Landick R, Hochschild A, Kondev J, Gelles J. Alternative transcription cycle for bacterial RNA polymerase. Nat Commun, 2020, 11(1): 448.
doi: 10.1038/s41467-019-14208-9 pmid: 31974358 |
[64] |
Kouba T, Koval' T, Sudzinová P, Pospíšil J, Brezovská B, Hnilicová J, Šanderová H, Janoušková M, Šiková M, Halada P, Sýkora M, Barvík I, Nováček J, Trundová M, Dušková J, Skálová T, Chon U, Murakami KS, Dohnálek J, Krásný L. Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat Commun, 2020, 11(1): 6419.
doi: 10.1038/s41467-020-20158-4 pmid: 33339823 |
[65] | Inlow K, Tenenbaum D, Friedman LJ, Kondev J, Gelles J. Recycling of bacterial RNA polymerase by the Swi2/Snf2 ATPase RapA. Proc Natl Acad Sci USA, 2023, 120(28): e2303849120. |
[66] |
Deaconescu AM, Chambers AL, Smith AJ, Nickels BE, Hochschild A, Savery NJ, Darst SA. Structural basis for bacterial transcription-coupled DNA repair. Cell, 2006, 124(3): 507-520.
doi: 10.1016/j.cell.2005.11.045 pmid: 16469698 |
[67] | Adebali O, Chiou YY, Hu JC, Sancar A, Selby CP. Genome-wide transcription-coupled repair in Escherichia coli is mediated by the Mfd translocase. Proc Natl Acad Sci USA, 2017, 114(11): E2116-E2125. |
[68] |
Ju XW, Li DY, Liu SX. Full-length RNA profiling reveals pervasive bidirectional transcription terminators in bacteria. Nat Microbiol, 2019, 4(11): 1907-1918.
doi: 10.1038/s41564-019-0500-z pmid: 31308523 |
[69] |
Gutierrez P, Kozlov G, Gabrielli L, Elias D, Osborne MJ, Gallouzi IE, Gehring K. Solution structure of YaeO, a Rho-specific inhibitor of transcription termination. J Biol Chem, 2007, 282(32): 23348-23353.
doi: 10.1074/jbc.M702010200 pmid: 17565995 |
[70] |
Said N, Finazzo M, Hilal T, Wang B, Selinger TL, Gjorgjevikj D, Artsimovitch I, Wahl MC. Sm-like protein Rof inhibits transcription termination factor ρ by binding site obstruction and conformational insulation. Nat Commun, 2024, 15(1): 3186.
doi: 10.1038/s41467-024-47439-6 pmid: 38622114 |
[71] |
Zhang J, Zhang S, Zhou W, Zhang X, Li GJ, Li RX, Lin XY, Chen ZY, Liu F, Shen P, Zhou XG, Gao Y, Chen ZG, Chao YJ, Wang CY. A widely conserved protein Rof inhibits transcription termination factor Rho and promotes Salmonella virulence program. Nat Commun, 2024, 15(1): 3187.
doi: 10.1038/s41467-024-47438-7 pmid: 38622116 |
[72] |
Sauer B, Ow D, Ling L, Calendar R. Mutants of satellite bacteriophage P4 that are defective in the suppression of transcriptional polarity. J Mol Biol, 1981, 145(1): 29-46.
pmid: 7021852 |
[73] |
Magyar A, Zhang X, Abdi F, Kohn H, Widger WR. Identifying the bicyclomycin binding domain through biochemical analysis of antibiotic-resistant Rho proteins. J Biol Chem, 1999, 274(11): 7316-7324.
doi: 10.1074/jbc.274.11.7316 pmid: 10066795 |
[74] |
Skordalakes E, Brogan AP, Park BS, Kohn H, Berger JM. Structural mechanism of inhibition of the Rho transcription termination factor by the antibiotic bicyclomycin. Structure, 2005, 13(1): 99-109.
pmid: 15642265 |
[75] |
Lawson MR, Dyer K, Berger JM. Ligand-induced and small-molecule control of substrate loading in a hexameric helicase. Proc Natl Acad Sci USA, 2016, 113(48): 13714-13719.
pmid: 27821776 |
[1] | 王纪龙, 李青, 战廷正. 自转录活性调节区测序技术在增强子发现研究中的应用[J]. 遗传, 2024, 46(8): 589-602. |
[2] | 胡玉龙, 杨芳, 陈彦潼, 谌烁楷, 闫煜博, 张跃博, 吴晓林, 汪加明, 何俊, 高宁. 整合mRNA转录本与基因组信息的基因组选择方法研究[J]. 遗传, 2024, 46(7): 560-569. |
[3] | 孙朝冉, 吴旭东. 组蛋白变体H2A.Z的转录调控功能与动态作用机制[J]. 遗传, 2024, 46(4): 279-289. |
[4] | 洪佳馨, 徐颂恩, 张文清, 刘伟. Pu.1和cMyb在斑马鱼中性粒细胞发育中的相互作用[J]. 遗传, 2024, 46(4): 319-332. |
[5] | 张傲, 岑山, 李晓宇. N6-腺苷甲基化修饰及其对LINE-1的调控机制[J]. 遗传, 2024, 46(3): 209-218. |
[6] | 韦恒, 刘天鹏, 何继红, 董孔军, 任瑞玉, 张磊, 李亚伟, 郝子义, 杨天育. 糜子GRF转录因子全基因组鉴定及在茎分生组织中的表达特征[J]. 遗传, 2024, 46(3): 242-255. |
[7] | 李淇, 董志诚, 刘敏. RNA聚合酶II大亚基羧基末端结构域:简单重复不简单[J]. 遗传, 2024, 46(12): 1028-1041. |
[8] | 温馨, 梅锦, 钱美玉, 蒋一丹, 王娟, 许士博, 王翠喆, 张君. 基于转录组测序对GULP1下游靶基因筛选及分析[J]. 遗传, 2024, 46(10): 860-870. |
[9] | 徐晓鹏, 范小英. 单细胞精度的表达数量性状位点研究进展[J]. 遗传, 2024, 46(10): 795-806. |
[10] | 时文睿, 渠鸿竹, 方向东. 痛风的多组学研究进展[J]. 遗传, 2023, 45(8): 643-657. |
[11] | 高智慧, 黄佳新, 罗昊玉, 徐海冬, 娄明, 宁博林, 邢晓旭, 牟芳, 李辉, 王宁. 鸡NRG4基因组及转录本结构分析[J]. 遗传, 2023, 45(5): 447-458. |
[12] | 韩熙, 罗富成. 单细胞转录组测序在少突胶质谱系细胞异质性与神经系统疾病中的应用[J]. 遗传, 2023, 45(3): 198-211. |
[13] | 王承贤, 容益康, 崔敏. 果蝇限制端粒转座子的分子机制[J]. 遗传, 2023, 45(3): 221-228. |
[14] | 袁萌, 李辉, 王守志. 大规模平行报告基因测定:一种分析基因表达调控的新技术[J]. 遗传, 2023, 45(10): 859-873. |
[15] | 吴丹丹, 朱明昆, 方忠艳, 马伟. 植物B染色体的分子结构组成及遗传机制研究进展[J]. 遗传, 2022, 44(9): 772-782. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: