遗传 ›› 2014, Vol. 36 ›› Issue (2): 95-102.doi: 10.3724/SP.J.1005.2014.0095
• 综述 • 下一篇
许飞1, 张进1, 马端1,2
收稿日期:
2013-08-26
修回日期:
2013-11-25
出版日期:
2014-02-20
发布日期:
2014-01-25
通讯作者:
张进, 博士, 讲师, 研究方向:遗传相关疾病的发病机制。E-mail: zhangjin@rocketmail.com
马端, 博士, 教授, 博士生导师, 研究方向:遗传相关疾病的发病机制。E-mail: duanma@fudan.edu.cn
E-mail:zhangjin@rocketmail.com
作者简介:
许飞, 直博生, 研究方向:肿瘤信号通路。E-mail:dashing1988@163.com
基金资助:
高等学校博士学科点专项科研基金(新教师类课题)(编号:20110071120033)资助
Fei Xu1, Jin Zhang1, Duan Ma1,2
Received:
2013-08-26
Revised:
2013-11-25
Online:
2014-02-20
Published:
2014-01-25
摘要:
Hippo/YAP通路和Wnt/β-catenin通路是在细胞的生长分化、组织器官形成以及成体干细胞的维持等方面都起着重要作用的两条信号通路。在哺乳动物细胞中, Wnt/β-catenin通路通过一系列胞质蛋白的相互作用, 使β-catenin蛋白在胞质内累积, 进而入核传递生长刺激信号。Hippo/YAP通路通过激酶级联反应磷酸化YAP/TAZ, 使其滞留在细胞质中, 抑制了YAP/TAZ的转录活性, 从而限制细胞的生长增殖, 诱导细胞凋亡。这两条通路的异常调控往往会导致肿瘤的发生。近年来越来越多的研究证实, Hippo/YAP 和Wnt/β-catenin在很多方面相互影响, 共同参与组织生长和胚胎发育的调控。研究这两个通路在肿瘤发生过程中的转导和调控以及它们相互作用的机制, 有助于为肿瘤的防治提供新的思路与策略。文章对这两条通路的协同作用及其分子机制进行了综述。
许飞, 张进, 马端. Hippo/YAP和Wnt/β-catenin通路的对话[J]. 遗传, 2014, 36(2): 95-102.
Fei Xu, Jin Zhang, Duan Ma. Crosstalk of Hippo/YAP and Wnt/β-catenin pathways[J]. HEREDITAS, 2014, 36(2): 95-102.
[1] Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer, 2013, 13(1): 11–26. <\p> [2] Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle I, Hein K, Vogt R, Kemler R. Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science, 2012, 336(6088): 1549–1554. <\p> [3] Ouyang H, Zhuo YH, Zhang K. WNT signaling in stem cell differentiation and tumor formation. J Clin Invest, 2013, 123(4): 1422–1424. <\p> [4] Watson AL, Rahrmann EP, Moriarity BS, Choi K, Conboy CB, Greeley AD, Halfond AL, Anderson LK, Wahl BR, Keng VW, Rizzardi AE, Forster CL, Collins MH, Sarver A, Wallace MR, Schmechel SC, Ratner N, Largaespada DA. Canonical Wnt/β-catenin signaling drives human schwann cell transformation, progression, and tumor maintenance. Cancer Discov, 2013, 3(6): 674–689. <\p> [5] Yu FX, Guan KL. The Hippo pathway: regulators and regulations. Genes Dev, 2013, 27(4): 355–371. <\p> [6] Huang J, Wu S, Barrera J, Matthews K, Pan DJ. The Hippo signaling pathway coordinately regulates cell pro-liferation and apoptosis by inactivating Yorkie, the Dro-sophila Homolog of YAP. Cell, 2005, 122(3): 421–434. <\p> [7] Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Sil-ber J, Zider A. SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol, 2008, 18(6): 435–441. <\p> [8] Kaneko KJ, DePamphilis ML. Regulation of gene expres-sion at the beginning of mammalian development and the TEAD family of transcription factors. Dev Genet, 1998, 22(1): 43–55. <\p> [9] Sharma RP, Chopra VL. Effect of the Wingless (wg1) mu-tation on wing and haltere development in Drosophila melanogaster. Dev Biol, 1976, 48(2): 461–465. <\p> [10] Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 1982, 31(1): 99– 109. <\p> [11] Cabrera CV, Alonso MC, Johnston P, Phillips RG, Law-rence PA. Phenocopies induced with antisense RNA iden-tify the wingless gene. Cell, 1987, 50(4): 659–663. <\p> [12] Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment po-larity gene wingless. Cell, 1987, 50(4): 649–657. <\p> [13] Willert K, Brown JD, Danenberg E, Duncan AW, Weiss-man IL, Reya T, Yates JR, Nusse R. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 2003, 423(6938): 448–452. <\p> [14] Hsieh JC, Rattner A, Smallwood PM, Nathans J. Bio-chemical characterization of Wnt-frizzled interactions us-ing a soluble, biologically active vertebrate Wnt protein. Proc Natl Acad Sci USA, 1999, 96(7): 3546–3551. <\p> [15] Dann CE, Hsieh JC, Rattner A, Sharma D, Nathans J, Leahy DJ. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Na-ture, 2001, 412(6842): 86–90. <\p> [16] Kimelman D, Xu W. beta-catenin destruction complex: in-sights and questions from a structural perspective. Onco-gene, 2006, 25(57): 7482–7491. <\p> [17] Maher MT, Mo R, Flozak AS, Peled ON, Gottardi CJ. Beta-catenin phosphorylated at serine 45 is spatially un-coupled from beta-catenin phosphorylated in the GSK3 domain: implications for signaling. PloS ONE, 2010, 5(4): e10184. <\p> [18] Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. beta-catenin is a target for the ubiquitin-proteasome path-way. EMBO J, 1997, 16(13): 3797–3804. <\p> [19] Marikawa Y, Elinson RP. beta-TrCP is a negative regulator of the Wnt/beta-catenin signaling pathway and dorsal axis formation in Xenopus embryos. Mech Dev, 1998, 77(1): 75–80. <\p> [20] Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H, Peifer M, Bejsovec A. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature, 1998, 395(6702): 604–608. <\p> [21] Brantjes H, Roose J, van De Wetering M, Clevers H. All Tcf HMG box transcription factors interact with Groucho- related co-repressors. Nucleic Acids Res, 2001, 29(7): 1410– 1419. <\p> [22] Cong F, Schweizer L, Varmus H. Wnt signals across the plasma membrane to activate the β-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development, 2004, 131(20): 5103–5115. <\p> [23] Cliffe A, Hamada F, Bienz M. A role of Dishevelled in re-locating Axin to the plasma membrane during wingless signaling. Curr Bio, 2003, 13(11): 960–966. <\p> [24] Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphoryla-tion. Science, 2007, 316(5831): 1619–1622. <\p> [25] Benchabane H, Hughes EG, Takacs CM, Baird JR, Ahmed Y. Adenomatous polyposis coli is present near the minimal level required for accurate graded responses to the Wing-less morphogen. Development, 2008, 135(5): 963–971. <\p> [26] Saito-Diaz K, Chen TW, Wang XX, Thorne CA, Wallace HA, Page-McCaw A, Lee E. The way Wnt works: com-ponents and mechanism. Growth Factors, 2013, 31(1): 1– 31. <\p> [27] Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling path-way takes shape. Trends Genet, 2000, 16(7): 279–283. <\p> [28] Pandur P, Maurus D, Kuhl M. Increasingly complex: new players enter the Wnt signaling network. Bioessays, 2002, 24(10): 881–884. <\p> [29] Larabell CA, Torres M, Rowning BA, Yost C, Miller JR, Wu M, Kimelman D, Moon RT. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J Cell Biol, 1997, 136(5): 1123– 1136. <\p> [30] Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W. Requirement for beta-catenin in ante-rior-posterior axis formation in mice. J Cell Biol, 2000, 148(3): 567–578. <\p> [31] Batra S, Shi Y, Kuchenbecker KM, He B, Reguart N, Mi-kami I, You L, Xu Z, Lin YC. Clement G, Jablons DM. Wnt inhibitory factor-1, a Wnt antagonist, is silenced by promoter hypermethylation in malignant pleural meso-thelioma. Biochem Biophys Res Commun, 2006, 342(4): 1228– 1232. <\p> [32] Taniguchi K, Roberts LR, Aderca IN, Dong XY, Qian CP, Murphy LM, Nagorney DM, Burgart LJ, Roche PC, Smith DI, Ross JA, Liu WG. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene, 2002, 21(31): 4863–4871. <\p> [33] Park JY, Park WS, Nam SW, Kim SY, Lee SH, Yoo NJ, Lee JY, Park CK. Mutations of beta-catenin and AXIN I genes are a late event in human hepatocellular carcino-genesis. Liver Int, 2005, 25(1): 70–76. <\p> [34] Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ. The Drosophila tumor suppressor gene warts encodes a ho-molog of human myotonic dystrophy kinase and is re-quired for the control of cell shape and proliferation. Genes Dev, 1995, 9(5): 534–546. <\p> [35] Xu T, Wang W, Zhang S, Stewart RA, Yu W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development, 1995, 121(4): 1053–1063. <\p> [36] Wu S, Huang JB, Dong JX, Pan DJ. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell, 2003, 114(4): 445–456. <\p> [37] Udan RS, Kango-Singh M, Nolo R, Tao CY, Halder G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol, 2003, 5(10): 914– 920. <\p> [38] Harvey KF, Pfleger CM, Hariharan IK. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell, 2003, 114(4): 457–467. <\p> [39] Tapon N, Harvey KF, Bell DW, Wahrer DCR, Schiripo TA, Haber DA, Hariharan IK. salvador Promotes both cell cy-cle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell, 2002, 110(4): 467–478. <\p> [40] Lai ZC, Wei XM, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho LL, Li Y. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell, 2005, 120(5): 675–685. <\p> [41] Vidal M, Cagan RL. Drosophila models for cancer re-search. Curr Opin Genet Dev, 2006, 16(1): 10–16. <\p> [42] Zhang L, Ren FF, Zhang Q, Chen YB, Wang B, Jiang J. The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell, 2008, 14(3): 377–387. <\p> [43] Hwang E, Ryu KS, Paakkonen K, Guntert P, Cheong HK, Lim DS, Lee JO, Jeon YH, Cheong C. Structural insight into dimeric interaction of the SARAH domains from Mst1 and RASSF family proteins in the apoptosis pathway. Proc Natl Acad Sci USA, 2007, 104(22): 9236–9241. <\p> [44] Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell prolif-eration. Curr Bio, 2008, 18(5): 311–321. <\p> [45] Wei X, Shimizu T, Lai ZC. Mob as tumor suppressor is activated by Hippo kinase for growth inhibition in Dro-sophila. EMBO J, 2007, 26(7): 1772–1781. <\p> [46] Zhao B, Wei XM, Li WQ, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu JD, Li L, Zheng P, Ye KQ, Chinnaiyan A, Halder G, Lai ZC, Guan KL. Inactivation of YAP onco-protein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev, 2007, 21(21): 2747–2761. <\p> [47] Basu S, Totty NF, Irwin MS, Sudol M, Downward J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell, 2003, 11(1): 11–23. <\p> [48] Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coor-dinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev, 2010, 24(1): 72–85. <\p> [49] Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li TT, Chan SW, Lim CJ, Hong WJ, Zhao SM, Xiong Y, Lei QY, Guan KL. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and re-cruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem, 2010, 285(48): 37159–37169. <\p> [50] Zhao B, Ye X, Yu JD, Li L, Li WQ, Li SM, Yu JJ, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL. TEAD me-diates YAP-dependent gene induction and growth control. Genes Dev, 2008, 22(14): 1962–1971. <\p> [51] Matakatsu H, Blair SS. Separating the adhesive and sig-naling functions of the Fat and Dachsous protocadherins. Development, 2006, 133(12): 2315–2324. <\p> [52] Rogulja D, Rauskolb C, Irvine KD. Morphogen control of wing growth through the Fat signaling pathway. Dev Cell, 2008, 15(2): 309–321. <\p> [53] Yu JZ, Zheng YG, Dong JX, Klusza S, Deng WM, Pan DJ. Kibra functions as a tumor suppressor protein that regu-lates Hippo signaling in conjunction with Merlin and Ex-panded. Dev Cell, 2010, 18(2): 288–299. <\p> [54] Baumgartner R, Poernbacher I, Buser N, Hafen E, Stocker H. The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell, 2010, 18(2): 309–316. <\p> [55] Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao CY, Jafar-Nejad H, Halder G. The tumour- suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apop-tosis. Nat Cell Biol, 2006, 8(1): 27–36. <\p> [56] Chen CL, Gajewski KM, Hamaratoglu F, Bossuyt W, Sansores-Garcia L, Tao CY, Halder G. The apical-basal cell polarity determinant Crumbs regulates Hippo signal-ing in Drosophila. Proc Natl Acad Sci USA, 2010, 107(36): 15810–15815. <\p> [57] Zhang X, George J, Deb S, Degoutin JL, Takano EA, Fox SB, Aocs Study group, Bowtell DDL, Harvey KF. The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene. Oncogene, 2011, 30(25): 2810–2822. <\p> [58] Karpowicz P, Perez J, Perrimon N. The Hippo tumor sup-pressor pathway regulates intestinal stem cell regeneration. Development, 2010, 137(24): 4135–4145. <\p> [59] Visser S, Yang X. LATS tumor suppressor: a new governor of cellular homeostasis. Cell Cycle, 2010, 9(19): 3892–3903. <\p> [60] Salah Z, Melino G, Aqeilan RI. Negative regulation of the Hippo pathway by E3 ubiquitin ligase ITCH is sufficient to promote tumorigenicity. Cancer Res, 2011, 71(5): 2010–2020. <\p> [61] Cai J, Zhang NL, Zheng YG, de Wilde RF, Maitra A, Pan DJ. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev, 2010, 24(21): 2383–2388. <\p> [62] Muramatsu T, Imoto I, Matsui T, Kozaki K, Haruki S, Sudol M, Shimada Y, Tsuda H, Kawano T, Inazawa J. YAP is a candidate oncogene for esophageal squamous cell carcinoma. Carcinogenesis, 2011, 32(3): 389–398. <\p> [63] Editors PLB. Vestigial rides a fat/dachsous wave in wing development. PLoS Biol, 2010, 8(6): E1000389. <\p> [64] Zecca M, Struhl G. Recruitment of cells into the Droso-phila wing primordium by a feed-forward circuit of ves-tigial autoregulation. Development, 2007, 134(16): 3001–3010. <\p> [65] Zecca M, Struhl G. A feed-forward circuit linking wingless, fat-dachsous signaling, and the warts-hippo pathway to Drosophila wing growth. PLoS Biol, 2010, 8(6): E1000386. <\p> [66] Wielenga VJM, Smits R, Korinek V, Smit L, Kielman M, Fodde R, Clevers H, Pals ST. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol, 1999, 154(2): 515–523. <\p> [67] Herrlich P, Bohmer FD. Redox regulation of signal trans-duction in mammalian cells. Biochem Pharmacol, 2000, 59(1): 35–41. <\p> [68] Morrison H, Sherman LS, Legg J, Banine F, Isacke C, Haipek CA, Gutmann DH, Ponta H, Herrlich P. The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev, 2001, 15(8): 968–980. <\p> [69] Konsavage WM, Kyler SL, Rennoll SA, Jin G, Yochum GS. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem, 2012, 287(15): 11730–11739. <\p> [70] Konsavage WM Jr, Yochum GS. Intersection of Hippo/YAP and Wnt/beta-catenin signaling pathways. Acta Biochim Biophys Sin (Shanghai), 2013, 45(2): 71–79. <\p> [71] Varelas X, Miller BW, Sopko R, Song S, Gregorieff A, Fellouse FA, Sakuma R, Pawson T, Hunziker W, McNeill H, Wrana JL, Attisano L. The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell, 2010, 18(4): 579– 591. <\p> [72] Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF. Hippo pathway inhibits Wnt sig-naling to restrain cardiomyocyte proliferation and heart size. Science, 2011, 332(6028): 458–461. <\p> [73] Zhou D, Zhang Y, Wu H, Barry E, Yin Y, Lawrence E, Dawson D, Willis JE, Markowitz SD, Camargo FD, Avruch J. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhi-bition of Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci USA, 2011, 108(49): E1312–1320. <\p> [74] Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/beta-catenin signalling. EMBO J, 2012, 31(5): 1109–1122. <\p> [75] Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, Richardson JA, Bassel-Duby R, Olson EN. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal, 2011, 4(196): ra70. <\p> [76] Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodri-guez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, Camargo FD. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell, 2011, 144(5): 782–795. <\p> [77] Bai H, Gayyed MF, Lam-Himlin DM, Klein AP, Nayar SK, Xu Y, Khan M, Argani P, Pan D, Anders RA. Expression of Yes-associated protein modulates Survivin expression in primary liver malignancies. Hum Pathol, 2012, 43(9): 1376–1385. <\p> [78] Gottardi CJ, Gumbiner BM. Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Biol Chem, 2004, 167(2): 339–349. <\p> [79] Gottardi CJ, Gumbiner BM. Adhesion signaling: how beta-catenin interacts with its partners. Curr Biol, 2001, 11(19): R792–794. <\p> [80] Takeichi M. Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol, 1993, 5(5): 806–811. <\p> [81] Kim NG, Koh E, Chen X, Gumbiner BM. E-cadherin me-diates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci USA, 2011, 108(29): 11930–11935.<\p> |
[1] | 程香荣,胡兴琳,姜琦,黄星卫,王楠,雷蕾. 核糖体DNA转录的表观调控与肿瘤发生[J]. 遗传, 2019, 41(3): 185-192. |
[2] | 李鑫,李梦玮,张依楠,徐寒梅. 常用肿瘤基因分析方法及基于TCGA数据库的分析应用[J]. 遗传, 2019, 41(3): 234-242. |
[3] | 吴保军,王卓,董宇,邓宇亮,施奇惠. 肺癌恶性胸腔积液中稀有肿瘤细胞的鉴定与单细胞测序分析[J]. 遗传, 2019, 41(2): 175-184. |
[4] | 黎伟, 秦俊, 汪晖, 陈廖斌. 表观遗传生物标志物在人类疾病早期诊治中的研究进展[J]. 遗传, 2018, 40(2): 104-115. |
[5] | 王天工, 叶孟. m 6A甲基化与肿瘤研究进展[J]. 遗传, 2018, 40(12): 1055-1065. |
[6] | 吉新彦, 钟国轩, 赵斌. 哺乳动物Hippo信号通路分子机制研究进展[J]. 遗传, 2017, 39(7): 546-567. |
[7] | 鲁有望,王昆华. 结直肠癌原发与配对转移肿瘤遗传异质性研究进展[J]. 遗传, 2017, 39(6): 482-490. |
[8] | 叶仲杰,刘启鹏,岑山,李晓宇. LINE-1编码的逆转录酶在肿瘤形成过程中的作用[J]. 遗传, 2017, 39(5): 368-376. |
[9] | 王晨,李艳明,方向东. 肿瘤液态活检的研究进展及其临床应用[J]. 遗传, 2017, 39(3): 220-231. |
[10] | 吴文君, 王智华, 王卓, 邓宇亮, 施奇惠. 肺癌患者外周血中循环肿瘤细胞的快速分离与体外培养[J]. 遗传, 2017, 39(1): 66-74. |
[11] | 董彦娇, 逄越, 李庆伟. 长寿型啮齿类动物的抗肿瘤机制[J]. 遗传, 2016, 38(5): 411-417. |
[12] | 刘芳, 宋小珍, 谢华, 陈晓丽. 体细胞变异对神经系统常见肿瘤和发育异常类疾病的致病性[J]. 遗传, 2016, 38(3): 196-205. |
[13] | 刘茜,王瑾晖,李晓宇,岑山. 逆转录转座子LINE-1与肿瘤的发生和发展[J]. 遗传, 2016, 38(2): 93-102. |
[14] | 刘同阳,郭海强,朱美妍,黄英泽,贾舒婷,罗瑛,张继虹. 突变型p53与其合成致死基因的研究进展[J]. 遗传, 2015, 37(4): 321-326. |
[15] | 胡清霞,高昂,曾炜佳,王妍馨,董金堂,朱正茂. 高等哺乳动物LEM结构域蛋白家族的研究进展[J]. 遗传, 2015, 37(2): 128-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: