遗传 ›› 2022, Vol. 44 ›› Issue (6): 510-520.doi: 10.16288/j.yczz.22-074
收稿日期:
2022-03-17
修回日期:
2022-04-22
出版日期:
2022-06-20
发布日期:
2022-05-27
通讯作者:
赵呈天
E-mail:zhengpf@stu.ouc.edu.cn;chengtian_zhao@ouc.edu.cn
作者简介:
郑鹏飞,在读硕士研究生,专业方向:发育生物学。E-mail: 基金资助:
Pengfei Zheng(), Haibo Xie, Panpan Zhu, Chengtian Zhao()
Received:
2022-03-17
Revised:
2022-04-22
Online:
2022-06-20
Published:
2022-05-27
Contact:
Zhao Chengtian
E-mail:zhengpf@stu.ouc.edu.cn;chengtian_zhao@ouc.edu.cn
Supported by:
摘要:
神经底板(floor plate, FP)位于神经管腹侧中线区,存在多种神经细胞类型,是调控神经管分化及维持体轴生长的重要信号中心。目前,对神经底板处神经元细胞的类型及分布研究并不深入。本研究以斑马鱼(Danio rerio)为模式动物,结合多种神经细胞的转基因品系,分析了斑马鱼幼鱼中神经底板细胞群的排列图式。研究发现,foxj1a、sox2、clusterin和gfap等多个基因在内侧中央底板(medial floor plate, MFP)单排细胞中表达。Kolmer-Agduhr神经元KAʼ与KA”又称为脑脊液接触神经元,定位在MFP附近,其中KA”神经元表达foxj1a和pkd2l1基因,与表达Gfap蛋白、Olig2蛋白或Sox2蛋白的阳性细胞间隔性插入MFP细胞腹侧间隙中。KAʼ神经元位于KA”背侧,表达foxj1a、pkd2l1和olig2基因,并与Sox2+或Olig2+阳性细胞间隔分布于MFP细胞胞体的两侧。药物处理实验结果表明:抑制Notch信号影响神经底板的发育,导致神经底板细胞排布异常,并引起幼鱼出现体轴上弯表型。本研究初步阐释了斑马鱼幼鱼早期神经底板处各种细胞类型的分布及定位特征,发现Notch信号对神经底板发育的重要调控作用。
郑鹏飞, 谢海波, 朱盼盼, 赵呈天. 斑马鱼神经底板处神经元的分布及特征[J]. 遗传, 2022, 44(6): 510-520.
Pengfei Zheng, Haibo Xie, Panpan Zhu, Chengtian Zhao. Distribution pattern of floor plate neurons in zebrafish[J]. Hereditas(Beijing), 2022, 44(6): 510-520.
图3
各种转基因品系在受精后3 d幼鱼神经底板处的表达模式 A:从左至右分别为Tg(foxj1a:HA-tdTomato, sox2:sox2-2a-sfGFP)神经管的矢状面、冠状面与横断面荧光表达图。白色虚线勾勒出楔形MFP轮廓。B:从左至右分别为Tg(foxj1a:HA-tdTomato, gfap:eGFP)躯体中部神经管的矢状面、冠状面与横断面荧光表达图。白色虚线勾勒出楔形MFP轮廓。C:从左至右分别为Tg(foxj1a:HA-tdTomato, gfap:eGFP)尾端神经管的矢状面、冠状面与横断面荧光表达图。D:Tg(foxj1a:HA-tdTomato, clusterin:eGFP)神经管矢状面荧光表达图,从左至右分别为红色荧光通道图像、绿色荧光通道图像和叠加图像。"
图4
CSF-cNs在神经底板处的分布 A:pkd2l1标记的CSF-cNs在神经底板处主要分为两排。红色虚线以上代表中央管(central canal, CC)区域;黄色与白色虚线轮廓指示CSF-cNs,黄色虚线标记腹侧的KA”神经元,白色虚线标记背侧的KA’神经元。B:Tg(sox2:sox2-2a-sfGFP)中存在未被标记的CSF-cNs。黄色虚线轮廓标记KA”神经元(左图),白色虚线轮廓标记KA’神经元(右图)。C:腹侧KA”神经元不表达olig2基因,而背侧KA’神经元则表达olig2基因。绿色信号为sox2转基因荧光,红色信号为olig2转基因荧光;黄色虚线轮廓标记KA”神经元(矢状面,左图),白色虚线轮廓标记KA’神经元(冠状面,右图)。D:CSF-cNs中表达foxj1a信号。绿色信号为sox2转基因荧光,红色信号为foxj1a转基因荧光;黄色虚线轮廓标记KA”神经元(左图),白色虚线轮廓标记KA’神经元(右图)。E:对Pkd2l1+阳性神经元的三维重建。黄色星号标记KA”神经元,白色星号标记KA’神经元。建模忽略轴突信号。"
[1] |
Colamarino SA, Tessier-Lavigne M. The role of the floor plate in axon guidance. Annu Rev Neurosci, 1995, 18(1):497-529.
doi: 10.1146/annurev.ne.18.030195.002433 |
[2] |
Tanabe Y, Jessell TM. Diversity and pattern in the developing spinal cord. Science, 1996, 274(5290):1115-1123.
pmid: 8895454 |
[3] |
Strähle U, Lam CS, Ertzer R, Rastegar S. Vertebrate floor-plate specification: variations on common themes. Trends Genet, 2004, 20(3):155-162.
pmid: 15036809 |
[4] |
Placzek M, Briscoe J. The floor plate: multiple cells, multiple signals. Nat Rev Neurosci, 2005, 6(3):230-240.
doi: 10.1038/nrn1628 |
[5] |
Yu XW, Ng CP, Habacher H, Roy S. Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet, 2008, 40(12):1445-1453.
doi: 10.1038/ng.263 |
[6] |
Cruz C, Ribes V, Kutejova E, Cayuso J, Lawson V, Norris D, Stevens J, Davey M, Blight K, Bangs F, Mynett A, Hirst E, Chung R, Balaskas N, Brody SL, Marti E, Briscoe J. Foxj1 regulates floor plate cilia architecture and modifies the response of cells to sonic hedgehog signalling. Development, 2010, 137(24):4271-4282.
doi: 10.1242/dev.051714 |
[7] |
Zhang XL, Jia S, Chen Z, Chong YL, Xie HB, Feng D, Wu XT, Song DZ, Roy S, Zhao CT. Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis. Nat Genet, 2018, 50(12):1666-1673.
doi: 10.1038/s41588-018-0260-3 |
[8] |
Song Z, Zhang XL, Jia S, Yelick PC, Zhao CT. Zebrafish as a Model for Human Ciliopathies. J Genet Genomics, 2016, 43(3):107-120.
doi: 10.1016/j.jgg.2016.02.001 pmid: 27020031 |
[9] |
Grimes DT, Boswell CW, Morante NFC, Henkelman RM, Burdine RD, Ciruna B. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science, 2016, 352(6291):1341-1344.
doi: 10.1126/science.aaf6419 pmid: 27284198 |
[10] | Placzek M, Yamada T, Tessier-Lavigne M, Jessell T, Dodd J. Control of dorsoventral pattern in vertebrate neural development: induction and polarizing properties of the floor plate. Dev Suppl, 1991, 113(Supplement 2):105-122. |
[11] |
Yamada T, Placzek M, Tanaka H, Dodd J, Jessell TM. Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell, 1991, 64(3):635-647.
pmid: 1991324 |
[12] |
Placzek M, Jessell TM, Dodd J. Induction of floor plate differentiation by contact-dependent, homeogenetic signals. Development, 1993, 117(1):205-218.
doi: 10.1242/dev.117.1.205 pmid: 8223247 |
[13] |
Ang SL, Wierda A, Wong D, Stevens KA, Cascio S, Rossant J, Zaret KS. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development, 1993, 119(4):1301-1315.
doi: 10.1242/dev.119.4.1301 pmid: 8306889 |
[14] |
Monaghan AP, Kaestner KH, Grau E, Schütz G. Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development, 1993, 119(3):567-578.
doi: 10.1242/dev.119.3.567 pmid: 8187630 |
[15] |
Sasaki H, Hogan BL. Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development, 1993, 118(1):47-59.
doi: 10.1242/dev.118.1.47 pmid: 8375339 |
[16] |
Roelink H, Porter JA, Chiang C, Tanabe Y, Chang DT, Beachy PA, Jessell TM. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell, 1995, 81(3):445-455.
pmid: 7736596 |
[17] |
Jeong Y, Epstein DJ. Distinct regulators of Shh transcription in the floor plate and notochord indicate separate origins for these tissues in the mouse node. Development, 2003, 130(16):3891-3902.
doi: 10.1242/dev.00590 |
[18] |
Odenthal J, van Eeden FJ, Haffter P, Ingham PW, Nüsslein-Volhard C. Two distinct cell populations in the floor plate of the zebrafish are induced by different pathways. Dev Biol, 2000, 219(2):350-363.
pmid: 10694427 |
[19] |
Schäfer M, Kinzel D, Winkler C. Discontinuous organization and specification of the lateral floor plate in zebrafish. Dev Biol, 2007, 301(1):117-129.
doi: 10.1016/j.ydbio.2006.09.018 |
[20] |
Cantaut-Belarif Y, Sternberg JR, Thouvenin O, Wyart C, Bardet PL. The reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis. Curr Biol, 2018, 28(15): 2479-2486.e4.
doi: S0960-9822(18)30747-4 pmid: 30057305 |
[21] |
Orts-Del'Immagine A, Cantaut-Belarif Y, Thouvenin O, Roussel J, Baskaran A, Langui D, Koëth F, Bivas P, Lejeune FX, Bardet PL, Wyart C. Sensory neurons contacting the cerebrospinal fluid require the reissner fiber to detect spinal curvature in vivo. Curr Biol, 2020, 30(5): 827-839.e4.
doi: S0960-9822(19)31704-X pmid: 32084399 |
[22] |
Ringers C, Jurisch-Yaksi N. Development: how the reissner fiber keeps our back straight. Curr Biol, 2020, 30(12):R705-R708.
doi: 10.1016/j.cub.2020.04.073 |
[23] |
Pevny L, Placzek M. SOX genes and neural progenitor identity. Curr Opin Neurobiol, 2005, 15(1):7-13.
doi: 10.1016/j.conb.2005.01.016 |
[24] |
Bernardos RL, Raymond PA. GFAP transgenic zebrafish. Gene Expr Patterns, 2006, 6(8):1007-1013.
pmid: 16765104 |
[25] |
Johnson K, Barragan J, Bashiruddin S, Smith CJ, Tyrrell C, Parsons MJ, Doris R, Kucenas S, Downes GB, Velez CM, Schneider C, Sakai C, Pathak N, Anderson K, Stein R, Devoto SH, Mumm JS, Barresi MJF. Gfap-positive radial glial cells are an essential progenitor population for later-born neurons and glia in the zebrafish spinal cord. Glia, 2016, 64(7):1170-1189.
doi: 10.1002/glia.22990 |
[26] |
Jeong YM, Jin TE, Choi JH, Lee MS, Kim HT, Hwang KS, Park DS, Oh HW, Choi JK, Korzh V, Schachner M, You KH, Kim CH. Induction of clusterin expression by neuronal cell death in zebrafish. J Genet Genomics, 2014, 41(11):583-589.
doi: 10.1016/j.jgg.2014.08.007 |
[27] |
Jiao S, Dai W, Lu L, Liu YZ, Zhou JF, Li Y, Korzh V, Duan CM. The conserved clusterin gene is expressed in the developing choroid plexus under the regulation of notch but not IGF signaling in zebrafish. Endocrinology, 2011, 152(5):1860-1871.
doi: 10.1210/en.2010-1183 |
[28] |
Sternberg JR, Prendergast AE, Brosse L, Cantaut-Belarif Y, Thouvenin O, Orts-Del'Immagine A,Castillo L,Djenoune L,Kurisu S,McDearmid JR,Bardet PL,Boccara C,Okamoto H,Delmas P,Wyart C. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nat Commun, 2018, 9(1):3804.
doi: 10.1038/s41467-018-06225-x pmid: 30228263 |
[29] |
Djenoune L, Khabou H, Joubert F, Quan FB, Nunes Figueiredo S, Bodineau L, Del Bene F, Burcklé C, Tostivint H, Wyart C. Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates. Front Neuroanat, 2014, 8:26.
doi: 10.3389/fnana.2014.00026 pmid: 24834029 |
[30] |
Petracca YL, Sartoretti MM, Di Bella DJ, Marin-Burgin A, Carcagno AL, Schinder AF, Lanuza GM. The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord. Development, 2016, 143(5):880-891.
doi: 10.1242/dev.129254 pmid: 26839365 |
[31] |
Andrzejczuk LA, Banerjee S, England SJ, Voufo C, Kamara K, Lewis KE. Tal1, Gata2a, and Gata3 have distinct functions in the development of V2b and cerebrospinal fluid-contacting KA spinal neurons. Front Neurosci, 2018, 12:170.
doi: 10.3389/fnins.2018.00170 |
[32] |
Zhao L, Ben-Yair R, Burns CE, Burns CG. Endocardial Notch signaling promotes cardiomyocyte proliferation in the regenerating zebrafish heart through Wnt pathway antagonism. Cell Rep, 2019, 26(3): 546-554.e5.
doi: 10.1016/j.celrep.2018.12.048 |
[33] |
Quan FB, Dubessy C, Galant S, Kenigfest NB, Djenoune L, Leprince J, Wyart C, Lihrmann I, Tostivint H. Comparative distribution and in vitro activities of the urotensin II-related peptides URP1 and URP2 in zebrafish: evidence for their colocalization in spinal cerebrospinal fluid-contacting neurons. PLoS One, 2015, 10(3):e0119290.
doi: 10.1371/journal.pone.0119290 |
[34] |
Park HC, Shin J, Appel B. Spatial and temporal regulation of ventral spinal cord precursor specification by Hedgehog signaling. Development, 2004, 131(23):5959-5969.
doi: 10.1242/dev.01456 |
[35] |
Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 1996, 383(6599):407-413.
doi: 10.1038/383407a0 |
[36] |
Latimer AJ, Appel B. Notch signaling regulates midline cell specification and proliferation in zebrafish. Dev Biol, 2006, 298(2):392-402.
pmid: 16876779 |
[1] | 李凯伦, 卢荆奥, 陈小辉, 张文清, 刘伟. 尿囊素促进破骨细胞缺陷斑马鱼骨折修复[J]. 遗传, 2023, 45(4): 341-353. |
[2] | 卢荆澳, 黄春燕, 林芷茵, 唐政, 马宁, 黄志斌. cd99l2基因调控斑马鱼白细胞组织间的迁移机制[J]. 遗传, 2022, 44(9): 798-809. |
[3] | 张婷婷, 刘峰. 斑马鱼蛋白酪氨酸硫酸化修饰的检测方法研究[J]. 遗传, 2022, 44(2): 178-186. |
[4] | 贾婷婷, 雷蕾, 吴歆媛, 蔡顺有, 陈艺璇, 薛钰. 二甲双胍对斑马鱼骨骼发育及损伤修复的机制研究[J]. 遗传, 2022, 44(1): 68-79. |
[5] | 郭佳妮, 刘帆, 王璐. 斑马鱼血液疾病模型及应用[J]. 遗传, 2020, 42(8): 725-738. |
[6] | 熊凤,谢训卫,潘鲁媛,李阔宇,柳力月,张昀,李玲璐,孙永华. 国家斑马鱼资源中心的资源、技术和服务建设[J]. 遗传, 2018, 40(8): 683-692. |
[7] | 许璟瑾, 张文娟, 王静怡, 姚丽云, 潘裕添, 欧一新, 薛钰, . 金线莲抑制斑马鱼黑色素形成的活性组分筛选及机理研究[J]. 遗传, 2017, 39(12): 1178-1187. |
[8] | 刘姗姗, 张翠珍, 彭刚. 饥饿对幼年斑马鱼下丘脑摄食相关性神经肽表达的影响[J]. 遗传, 2016, 38(9): 821-830. |
[9] | 张峰华,王厚鹏,黄思雨,熊凤,朱作言,孙永华. 两种密码子优化的Cas9编码基因在斑马鱼胚胎中基因敲除效率的比较[J]. 遗传, 2016, 38(2): 144-154. |
[10] | 顾爱华 严丽锋. 斑马鱼在再生医学研究中的应用及进展[J]. 遗传, 2013, 35(7): 856-866. |
[11] | 李礼,罗凌飞. 以斑马鱼为模式动物研究器官的发育与再生[J]. 遗传, 2013, 35(4): 421-432. |
[12] | 徐冉冉 张从伟 曹羽 王强. 缺失mir122抑制斑马鱼肝脏前体细胞向肝细胞分化[J]. 遗传, 2013, 35(4): 488-494. |
[13] | 沈延 黄鹏 张博. TALEN构建与斑马鱼基因组定点突变的实验方法与流程[J]. 遗传, 2013, 35(4): 533-544. |
[14] | 李辉辉 黄萍 董巍 朱作言 刘东. 斑马鱼研究走向生物医学[J]. 遗传, 2013, 35(4): 410-420. |
[15] | 李小泉,杜久林. 幼年斑马鱼的视觉系统与捕食行为[J]. 遗传, 2013, 35(4): 468-476. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: