遗传 ›› 2023, Vol. 45 ›› Issue (4): 295-305.doi: 10.16288/j.yczz.22-366
龚一鸣(), 王翔宇, 贺小云, 刘玉芳, 余平, 储明星(), 狄冉()
收稿日期:
2022-11-17
修回日期:
2023-02-06
出版日期:
2023-04-20
发布日期:
2023-03-28
通讯作者:
储明星,狄冉
E-mail:g18080010835@163.com;dirangirl@163.com;mxchu@263.net
作者简介:
龚一鸣,在读硕士研究生,专业方向:动物遗传育种。E-mail: 基金资助:
Yiming Gong(), Xiangyu Wang, Xiaoyun He, Yufang Liu, Ping Yu, Mingxing Chu(), Ran Di()
Received:
2022-11-17
Revised:
2023-02-06
Online:
2023-04-20
Published:
2023-03-28
Contact:
Chu Mingxing,Di Ran
E-mail:g18080010835@163.com;dirangirl@163.com;mxchu@263.net
Supported by:
摘要:
BMPR1B是绵羊中被鉴定的第一个多羔主效基因,但该基因中FecB突变增加绵羊排卵数的分子机制尚未解析。近年来发现BMPR1B活性受小分子抑制蛋白FKBP1A调控,该蛋白充当了BMPR1B及BMP/SMAD通路活性控制开关的关键作用且FecB突变恰好位于FKBP1A与BMPR1B结合位点附近。本文首先总结了BMPR1B和FKBP1A的蛋白结构,阐明二者空间结合区域及FecB突变的位置,进而预测了FecB突变与二者结合强弱的关系,最终提出了FecB突变通过影响BMPR1B与FKBP1A结合强度改变BMP/SMAD通路活性的科学假设,为后续探明FecB突变影响绵羊排卵数的分子机制提供了新思路。
龚一鸣, 王翔宇, 贺小云, 刘玉芳, 余平, 储明星, 狄冉. 绵羊FecB突变对BMPR1B活性及BMP/SMAD通路的影响研究进展[J]. 遗传, 2023, 45(4): 295-305.
Yiming Gong, Xiangyu Wang, Xiaoyun He, Yufang Liu, Ping Yu, Mingxing Chu, Ran Di. Progress on the effect of FecB mutation on BMPR1B activity and BMP/SMAD pathway in sheep[J]. Hereditas(Beijing), 2023, 45(4): 295-305.
[1] | Piper LR, Bindon BM. The Booroola Merino and the performance of medium non-Peppin crosses at Armidale. Wool Technol Sheep Breed, 1983, 31(1): 14-19, 33. |
[2] | Davis GH, Kelly RW. Segregation of a major gene influencing ovulation rate in progeny of Booroola sheep in commercial and research flocks. Proc N Z Soc Anim Prod, 1983, 43: 197-200. |
[3] | Piper LR, Bindon BM, Davis GH. The single gene inheritance of the high litter size of the Booroola Merino. London: Butterworths, 1985, 115-125. |
[4] | Singh RV, Sivakumar A, Sivashankar S, Das G. Evaluation of the Booroola (FecB) gene in Muzaffarnagari sheep. ACIAR Proc, 2009, 133: 223-224. |
[5] |
Montgomery GW, Lord EA, Penty JM, Dodds KG, Broad TE, Cambridge L, Sunden SL, Stone RT, Crawford AM.The Booroola fecundity (FecB) gene maps to sheep chromosome 6. Genomics, 1994, 22(1): 148-153.
pmid: 7959761 |
[6] |
Souza CJ, MacDougall C, MacDougall C, Campbell BK, McNeilly AS, Baird DT. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. J Endocrinol, 2001, 169(2): R1-R6.
doi: 10.1677/joe.0.169r001 pmid: 11312159 |
[7] |
Wilson T, Wu XY, Juengel JL, Ross IK, Lumsden JM, Lord EA, Dodds KG, Walling GA, McEwan JC, O'Connell AR, McNatty KP, Montgomery GW. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol Reprod, 2001, 64(4): 1225-1235.
doi: 10.1095/biolreprod64.4.1225 pmid: 11259271 |
[8] |
Mulsant P, Lecerf F, Fabre S, Schibler L, Monget P, Lanneluc I, Pisselet C, Riquet J, Monniaux D, Callebaut I, Cribiu E, Thimonier J, Teyssier J, Bodin L, Cognié Y, Chitour N, Elsen JM. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes. Proc Natl Acad Sci USA, 2001, 98(9): 5104-5109.
doi: 10.1073/pnas.091577598 pmid: 11320249 |
[9] | Davis GH. The Booroola gene: origin, distribution, use and management of the FecB mutation. ACIAR Proc, 2009, 133: 22-31. |
[10] | Walkden-Brown SW, Werf JHJ van der, Nimbkar C, Gupta VS.Proceedings of the Helen Newton Turner Memorial International Workshop, Pune, Maharashtra, India, 10-12 November, 2008. ACIAR Proc, 2009, 133: 238. |
[11] |
Chong YQ, Jiang XP, Liu GQ. An ancient positively selected BMPRIB missense variant increases litter size of Mongolian sheep populations following latitudinal gradient. Mol Genet Genomics, 2022, 297(1): 155-167.
doi: 10.1007/s00438-021-01828-4 pmid: 35013854 |
[12] |
Persani L, Rossetti R, Di Pasquale E, Cacciatore C, Fabre S. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum Reprod Update, 2014, 20(6): 869-883.
doi: 10.1093/humupd/dmu036 pmid: 24980253 |
[13] |
Chang HM, Qiao J, Leung PCK. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update, 2016, 23(1): 1-18.
doi: 10.1093/humupd/dmw039 |
[14] |
Huse M, Chen YG, Massagué J, Kuriyan J.Crystal structure of the cytoplasmic domain of the type I TGF beta receptor in complex with FKBP12. Cell, 1999, 96(3): 425-436.
doi: 10.1016/s0092-8674(00)80555-3 pmid: 10025408 |
[15] |
Akhatayeva Z, Bi Y, He YW, Khan R, Li J, Li HX, Pan CY, Lan XY. Survey of the relationship between polymerphisms within the BMPR1B gene and sheep reproductive traits. Anim Biotechnol, 2021, 29: 1-10.
doi: 10.1080/10495398.2016.1276926 |
[16] |
Luong HTT, Chaplin J, McRae AF, Medland SE, Willemsen G, Nyholt DR, Henders AK, Hoekstra C, Duffy DL, Martin NG, Boomsma DI, Montgomery GW, Painter JN. Variation in BMPR1B, TGFRB1 and BMPR2 and control of dizygotic twinning. Twin Res Hum Genet, 2011, 14(5): 408-416.
doi: 10.1375/twin.14.5.408 pmid: 21962132 |
[17] | Renault L, Patiño LC, Magnin F, Delemer B, Young J, Laissue P, Binart N, Beau I. BMPR1A and BMPR1B missense mutations cause primary ovarian insufficiency. J Clin Endocrinol Metab, 2020, 105(4): dgz226. |
[18] |
Sun XJ, Mei SQ, Tao H, Wang GD, Su LN, Jiang SW, Deng CY, Xiong YZ, Li FG. Microarray profiling for differential gene expression in PMSG-hCG stimulated preovulatory ovarian follicles of Chinese Taihu and Large White sows. BMC Genomics, 2011, 12: 111.
doi: 10.1186/1471-2164-12-111 pmid: 21324170 |
[19] |
Haas CS, Oliveira FC, Rovani MT, Ferst JG, Vargas SF, Vieira AD, Mondadori RG, Pegoraro LMC, Gonçalves PBD, Bordignon V, Ferreira R, Gasperin BG. Bone morphogenetic protein 15 intrafollicular injection inhibits ovulation in cattle. Theriogenology, 2022, 182: 148-154.
doi: 10.1016/j.theriogenology.2022.02.010 pmid: 35176680 |
[20] |
Yang CX, Zi XD, Wang Y, Yang DQ, Ma L, Lu JY, Niu HR, Xiao X. Cloning and mRNA expression levels of GDF9, BMP15, and BMPR1B genes in prolific and non-prolific goat breeds. Mol Reprod Dev, 2012, 79(1): 2.
doi: 10.1002/mrd.21386 |
[21] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35(6): 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887 |
[22] |
Wen YL, Guo XF, Ma L, Zhang XS, Zhang JL, Zhao SG, Chu MX. The expression and mutation of BMPR1B and its association with litter size in small-tail Han sheep (Ovis aries). Arch Anim Breed, 2021, 64(1): 211-221.
doi: 10.5194/aab-64-211-2021 |
[23] |
Zhang XY, Zhang LP, Sun WB, Lang X, Wu JP, Zhu CY, Jia JL, Jin JP, La Y, Casper DP. Study on the correlation between BMPR1B protein in sheep blood and reproductive performance. J Anim Sci, 2020, 98(5): skaa100.
doi: 10.1093/jas/skaa100 |
[24] |
Jiang Y, Xie M, Chen WB, Talbot R, Maddox JF, Faraut T, Wu CH, Muzny DM, Li YX, Zhang WG, Stanton JA, Brauning R, Barris WC, Hourlier T, Aken BL, Searle SMJ, Adelson DL, Bian C, Cam GR, Chen YL, Cheng SF, DeSilva U, Dixen K, Dong Y, Fan GY, Franklin IR, Fu SY, Guan R, Highland MA, Holder ME, Huang GD, Ingham AB, Jhangiani SN, Kalra D, Kovar CL, Lee SL, Liu WQ, Liu X, Lu CX, Lv T, Mathew T, McWilliam S, Menzies M, Pan SK, Robelin D, Servin B, Townley D, Wang WL, Wei B, White SN, Yang XH, Ye C, Yue YJ, Zeng P, Zhou Q, Hansen JB, Kristensen K, Gibbs RA, Flicek P, Warkup CC, Jones HE, Oddy VH, Nicholas FW, McEwan JC, Kijas J, Wang J, Worley KC, Archibald AL, Cockett N, Xu X, Wang W, Dalrymple BP. The sheep genome illuminates biology of the rumen and lipid metabolism. Science, 2014, 344(6188): 1168-1173.
doi: 10.1126/science.1252806 pmid: 24904168 |
[25] |
Sanfins A, Rodrigues P, Albertini DF. GDF-9 and BMP-15 direct the follicle symphony. J Assist Reprod Genet, 2018, 35(10): 1741-1750.
doi: 10.1007/s10815-018-1268-4 |
[26] |
Paradis F, Novak S, Murdoch GK, Dyck MK, Dixon WT, Foxcroft GR. Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig. Reproduction, 2009, 138(1): 115-129.
doi: 10.1530/REP-08-0538 pmid: 19359354 |
[27] | Pan ZY, Di R, Liu QY, Hu WP, Wang XY, Guo XF, Chu MX. Bioinformatics analysis on BMPR1B gene of sheep. China Herbivore Sci, 2015, 35(6): 1-5. |
潘章源, 狄冉, 刘秋月, 胡文萍, 王翔宇, 郭晓飞, 储明星. 绵羊BMPR1B基因生物信息学分析. 中国草食动物科学, 2015, 35(6): 1-5. | |
[28] |
Deeds EJ, Shakhnovich EI. A structure-centric view of protein evolution, design, and adaptation. Adv Enzymol Relat Areas Mol Biol, 2007, 75: 133-191, xi-xii.
pmid: 17124867 |
[29] |
Hess GP, Rupley JA. Structure and function of proteins. Annu Rev Biochem, 1971, 40: 1013-1044.
pmid: 4333476 |
[30] |
Abdoli R, Zamani P, Deljou A, Rezvan H. Association of BMPR-1B and GDF9 genes polymorphisms and secondary protein structure changes with reproduction traits in Mehraban ewes. Gene, 2013, 524(2): 296-303.
doi: 10.1016/j.gene.2013.03.133 pmid: 23583795 |
[31] |
Liu JY, Du X, Zhou JL, Pan ZX, Liu HL, Li QF.MicroRNA-26b functions as a proapoptotic factor in porcine follicular Granulosa cells by targeting Sma-and Mad-related protein 4. Biol Reprod, 2014, 91(6): 146.
doi: 10.1095/biolreprod.114.122788 pmid: 25395673 |
[32] |
Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-beta receptor. Nature, 1994, 370(6488): 341-347.
doi: 10.1038/370341a0 |
[33] |
Attisano L, Wrana JL. Signal transduction by members of the transforming growth factor-beta superfamily. Cytokine Growth Factor Rev, 1996, 7(4): 327-339.
doi: 10.1016/S1359-6101(96)00042-1 |
[34] |
Massagué J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell, 2000, 103(2): 295-309.
doi: 10.1016/s0092-8674(00)00121-5 pmid: 11057902 |
[35] |
Galat A. Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Cell Mol Life Sci, 2013, 70(18): 3243-3275.
doi: 10.1007/s00018-012-1206-z pmid: 23224428 |
[36] |
Standaert RF, Galat A, Verdine GL, Schreiber SL. Molecular cloning and overexpression of the human FK506-binding protein FKBP. Nature, 1990, 346(6285): 671-674.
doi: 10.1038/346671a0 |
[37] |
Xing MY, Wang J, Yang Q, Wang Y, Li JS, Xiong J, Zhou S. FKBP 12 is a predictive biomarker for efficacy of anthracycline-based chemotherapy in breast cancer. Cancer Chemother Pharmacol, 2019, 84(4): 861-872.
doi: 10.1007/s00280-019-03923-1 |
[38] |
Michnick SW, Rosen MK, Wandless TJ, Karplus M, Schreiber SL. Solution structure of FKBP, a rotamase enzyme and receptor for FK506 and rapamycin. Science, 1991, 252(5007): 836-839.
pmid: 1709301 |
[39] |
Moore JM, Peattie DA, Fitzgibbon MJ, Thomson JA.Solution structure of the major binding protein for the immunosuppressant FK506. Nature, 1991, 351(6323): 248-250.
doi: 10.1038/351248a0 |
[40] |
Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J. Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science, 1991, 252(5007): 839-842.
pmid: 1709302 |
[41] |
Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol, 1993, 229(1): 105-124.
doi: 10.1006/jmbi.1993.1012 pmid: 7678431 |
[42] |
Chaikuad A, Bullock AN. Structural basis of intracellular TGF-β signaling: receptors and Smads. Cold Spring Harb Perspect Biol, 2016, 8(11): a022111.
doi: 10.1101/cshperspect.a022111 |
[43] |
Aghdasi B, Ye K, Resnick A, Huang A, Ha HC, Guo X, Dawson TM, Dawson VL, Snyder SH. FKBP12, the 12-kDa FK506-binding protein, is a physiologic regulator of the cell cycle. Proc Natl Acad Sci USA, 2001, 98(5): 2425-2430.
pmid: 11226255 |
[44] |
Van Acker K, Bultynck G, Rossi D, Sorrentino V, Boens N, Missiaen L, De Smedt H, Parys JB, Callewaert G. The 12 kDa FK506-binding protein, FKBP12, modulates the Ca(2+)-flux properties of the type-3 ryanodine receptor. J Cell Sci, 2004, 117(Pt 7): 1129-1137.
pmid: 14970260 |
[45] |
Yamaguchi T, Kurisaki A, Yamakawa N, Minakuchi K, Sugino H. FKBP12 functions as an adaptor of the Smad7-Smurf1 complex on activin type I receptor. J Mol Endocrinol, 2006, 36(3): 569-579.
pmid: 16720724 |
[46] |
Miyakawa AA, Girão-Silva T, Krieger JE, Edelman ER. Rapamycin activates TGF receptor independently of its ligand: implications for endothelial dysfunction. Clin Sci (Lond), 2018, 132(4): 437-447.
doi: 10.1042/CS20171457 pmid: 29343616 |
[47] |
Wojciech S, Ahmad R, Belaid-Choucair Z, Journé AS, Gallet S, Dam J, Daulat A, Ndiaye-Lobry D, Lahuna O, Karamitri A, Guillaume JL, Do Cruzeiro M, Guillonneau F, Saade A, Clément N, Courivaud T, Kaabi N, Tadagaki K, Delagrange P, Prévot V, Hermine O, Prunier C, Jockers R. The orphan GPR50 receptor promotes constitutive TGFβ receptor signaling and protects against cancer development. Nat Commun, 2018, 9(1): 1216.
doi: 10.1038/s41467-018-03609-x pmid: 29572483 |
[48] |
Wang TW, Donahoe PK. The immunophilin FKBP12: a molecular guardian of the TGF-beta family type I receptors. Front Biosci, 2004, 9: 619-631.
doi: 10.2741/1095 |
[49] |
Otsuka F, Moore RK, Iemura S, Ueno N, Shimasaki S.Follistatin inhibits the function of the oocyte-derived factor BMP-15. Biochem Biophys Res Commun, 2001, 289(5): 961-966.
doi: 10.1006/bbrc.2001.6103 |
[50] |
Erickson GF, Shimasaki S. The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod Biol Endocrinol, 2003, 1: 9.
doi: 10.1186/1477-7827-1-9 |
[51] |
Lee WS, Otsuka F, Moore RK, Shimasaki S. Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biol Reprod, 2001, 65(4): 994-999.
doi: 10.1095/biolreprod65.4.994 pmid: 11566718 |
[52] |
Otsuka F, Moore RK, Shimasaki S. Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary. J Biol Chem, 2001, 276(35): 32889-32895.
doi: 10.1074/jbc.M103212200 pmid: 11447221 |
[53] |
Kaivo-oja N, Jeffery LA, Ritvos O, Mottershead DG. Smad signalling in the ovary. Reprod Biol Endocrinol, 2006, 4: 21.
doi: 10.1186/1477-7827-4-21 |
[54] |
Weiss A, Attisano L. The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol, 2013, 2(1): 47-63.
doi: 10.1002/wdev.86 |
[55] |
Saneyasu T, Honda K, Kamisoyama H. Myostatin increases Smad2 phosphorylation and atrogin-1 expression in chick embryonic myotubes. J Poult Sci, 2019, 56(3): 224-230.
doi: 10.2141/jpsa.0180092 pmid: 32055218 |
[56] |
Li QL. Inhibitory SMADs: potential regulators of ovarian function. Biol Reprod, 2015, 92(2): 50.
doi: 10.1095/biolreprod.114.125203 pmid: 25550343 |
[57] |
Yao YL, Reheman A, Xu YF, Li QF. miR-125b contributes to ovarian granulosa cell apoptosis through targeting BMPR1B, a major gene for sheep prolificacy. Reprod Sci, 2019, 26(2): 295-305.
doi: 10.1177/1933719118770544 pmid: 29661099 |
[58] |
Shimizu T, Kayamori T, Murayama C, Miyamoto A. Bone morphogenetic protein (BMP)-4 and BMP-7 suppress granulosa cell apoptosis via different pathways: BMP-4 via PI3K/PDK-1/Akt and BMP-7 via PI3K/PDK-1/PKC. Biochem Biophys Res Commun, 2012, 417(2): 869-873.
doi: 10.1016/j.bbrc.2011.12.064 |
[59] |
Wijayanti D, Zhang SH, Yang YT, Bai YY, Akhatayeva Z, Pan CY, Zhu HJ, Qu L, Lan XY. Goat SMAD family member 1 (SMAD1): mRNA expression, genetic variants, and their associations with litter size. Theriogenology, 2022, 193: 11-19.
doi: 10.1016/j.theriogenology.2022.09.001 pmid: 36116245 |
[60] |
Xu SS, Gao L, Xie XL, Ren YL, Shen ZQ, Wang F, Shen M, Eyϸórsdóttir E, Hallsson JH, Kiseleva T, Kantanen J, Li MH. Genome-wide association analyses highlight the potential for different genetic mechanisms for litter size among sheep breeds. Front Genet, 2018, 9: 118.
doi: 10.3389/fgene.2018.00118 |
[61] |
Wu J, Chen X, Sehgal P, Zhang TW, Jackson-Weaver O, Gou YC, Bautch V, Frenkel B, Sun HC, Xu J. Arginine methylation of R81 in Smad6 confines BMP-induced Smad1 signaling. J Biol Chem, 2021, 296: 100496.
doi: 10.1016/j.jbc.2021.100496 |
[62] |
Abdurahman A, Du X, Yao YL, Sulaiman Y, Aniwashi J, Li QF. Smad4 feedback enhances BMPR1B transcription in ovine granulosa cells. Int J Mol Sci, 2019, 20(11): 2732.
doi: 10.3390/ijms20112732 |
[63] |
Miyazawa K, Miyazono K. Regulation of TGF-β family signaling by inhibitory Smads. Cold Spring Harb Perspect Biol, 2017, 9(3): a022095.
doi: 10.1101/cshperspect.a022095 |
[64] |
Wang GL, Cai J, Zhang JS, Li CY. Mechanism of triptolide in treating ankylosing spondylitis through the anti‑ossification effect of the BMP/Smad signaling pathway. Mol Med Rep, 2018, 17(2): 2731-2737.
doi: 10.3892/mmr.2017.8117 pmid: 29207198 |
[65] |
Goto K, Kamiya Y, Imamura T, Miyazono K, Miyazawa K. Selective inhibitory effects of Smad6 on bone morphogenetic protein type I receptors. J Biol Chem, 2007, 282(28): 20603-20611.
doi: 10.1074/jbc.M702100200 pmid: 17493940 |
[66] |
Xu J, Wang AH, Oses-Prieto J, Makhijani K, Katsuno Y, Pei M, Yan LL, Zheng YG, Burlingame A, Brückner K, Derynck R. Arginine methylation initiates BMP-induced Smad signaling. Mol Cell, 2013, 51(1): 5-19.
doi: 10.1016/j.molcel.2013.05.004 pmid: 23747011 |
[67] |
Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A. Smad 6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev, 1998, 12(2): 186-197.
doi: 10.1101/gad.12.2.186 |
[68] |
Bai S, Shi X, Yang X, Cao X. Smad 6 as a transcriptional corepressor. J Biol Chem, 2000, 275(12): 8267-8270.
doi: 10.1074/jbc.275.12.8267 pmid: 10722652 |
[69] |
Lin X, Liang YY, Sun BH, Liang M, Shi YJ, Brunicardi FC, Shi Y, Feng XH. Smad 6 recruits transcription corepressor CtBP to repress bone morphogenetic protein- induced transcription. Mol Cell Biol, 2003, 23(24): 9081-9093.
doi: 10.1128/MCB.23.24.9081-9093.2003 |
[70] |
Bahire SV, Rajput PK, Kumar V, Kumar D, Kataria M, Kumar S. Quantitative expression of mRNA encoding BMP/SMAD signalling genes in the ovaries of Booroola carrier and non-carrier GMM sheep. Reprod Domest Anim, 2019, 54(10): 1375-1383.
doi: 10.1111/rda.13535 pmid: 31356698 |
[71] |
Abdurahman A, Aierken W, Zhang F, Obulkasim R, Aniwashi J, Sulayman A. miR-1306 induces cell apoptosis by targeting BMPR1B gene in the ovine granulosa cells. Front Genet, 2022, 13: 989912.
doi: 10.3389/fgene.2022.989912 |
[72] |
Feary ES, Juengel JL, Smith P, French MC, O'Connell AR, Lawrence SB, Galloway SM, Davis GH, McNatty KP. Patterns of expression of messenger RNAs encoding GDF9, BMP15, TGFBR1, BMPR1B, and BMPR2 during follicular development and characterization of ovarian follicular populations in ewes carrying the Woodlands FecX2W mutation. Biol Reprod, 2007, 77(6): 990-998.
doi: 10.1095/biolreprod.107.062752 pmid: 17715428 |
[73] |
Broege A, Pham L, Jensen ED, Emery A, Huang TH, Stemig M, Beppu H, Petryk A, O'Connor M, Mansky K, Gopalakrishnan R. Bone morphogenetic proteins signal via SMAD and mitogen-activated protein (MAP) kinase pathways at distinct times during osteoclastogenesis. J Biol Chem, 2013, 288(52): 37230-37240.
doi: 10.1074/jbc.M113.496950 pmid: 24235143 |
[74] |
Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Canalis E.Activation of the ERK pathway in osteoblastic cells, role of gremlin and BMP-2. J Cell Biochem, 2008, 104(4): 1421-1426.
doi: 10.1002/jcb.21715 pmid: 18286547 |
[75] |
Chan MC, Nguyen PH, Davis BN, Ohoka N, Hayashi H, Du KY, Lagna G, Hata A. A novel regulatory mechanism of the bone morphogenetic protein (BMP) signaling pathway involving the carboxyl-terminal tail domain of BMP type II receptor. Mol Cell Biol, 2007, 27(16): 5776-5789.
doi: 10.1128/MCB.00218-07 pmid: 17576816 |
[76] |
Gomez-Puerto MC, Iyengar PV, de Vinuesa AG, Ten Dijke P, Sanchez-Duffhues G. Bone morphogenetic protein receptor signal transduction in human disease. J Pathol, 2019, 247(1): 9-20.
doi: 10.1002/path.5170 |
[77] |
Derynck R, Zhang YE. Smad-dependent and Smad- independent pathways in TGF-beta family signalling. Nature, 2003, 425(6958): 577-584.
doi: 10.1038/nature02006 |
[1] | 王海涛, 李亭亭, 黄勋, 马润林, 刘秋月. 遗传修饰技术在绵羊分子设计育种中的应用[J]. 遗传, 2021, 43(6): 580-600. |
[2] | 何晓红, 蒋琳, 浦亚斌, 赵倩君, 马月辉. 牛、绵羊角的遗传定位及遗传机制研究进展[J]. 遗传, 2021, 43(1): 40-51. |
[3] | 王冰源, 牟玉莲, 李奎, 刘志国. 农业动物干细胞研究进展[J]. 遗传, 2020, 42(11): 1073-1080. |
[4] | 赵志达,张莉. 基因组选择在绵羊育种中的应用[J]. 遗传, 2019, 41(4): 293-303. |
[5] | 胡广东,郝科兴,黄涛,曾维斌,谷新利,王静. 绵羊高效转基因通用型piggyBac转座子载体构建及功能验证[J]. 遗传, 2018, 40(8): 647-656. |
[6] | 夏青, 刘秋月, 王翔宇, 胡文萍, 李春艳, 贺小云, 储明星, 狄冉. 绵羊季节性繁殖分子机制及休情季节诱导绵羊发情配种技术[J]. 遗传, 2018, 40(5): 369-377. |
[7] | 赵永欣, 李孟华, 赵要风. 中国绵羊起源、进化和遗传多样性研究进展[J]. 遗传, 2017, 39(11): 958-973. |
[8] | 王伟, 王玉霜, 黄兰兰, 简子健, 王新华, 刘守仁, 皮文辉. siRNA干扰绵羊胚胎成纤维细胞Lig4基因增加同源重组载体重连修复效率[J]. 遗传, 2016, 38(9): 831-839. |
[9] | 陈天直, 赵兵令, 刘宇, 赵园园, 王海东, 范瑞文, 王鹏超, 董常生. GPR143在绵羊皮肤组织中的表达及定位分析[J]. 遗传, 2016, 38(7): 658-665. |
[10] | 高磊,沈敏,甘尚权,杨井泉,张译元. 绵羊CCNG1基因克隆及表达分析[J]. 遗传, 2015, 37(4): 374-381. |
[11] | 王春玲 孟晨玲 曹少先 张俊 孟春花 王慧利 方永飞 朱冬冬 茆达干. 湖羊、东湖杂种羊POMC基因外显子3单核苷酸多态性及其与生长性状的关联分析[J]. 遗传, 2013, 35(9): 1095-1100. |
[12] | 高磊,甘尚权,杨井泉,杨剑波,梁耀伟,阿不都艾尼·努拉洪,沈敏. 绵羊发情周期不同组织Cry1 mRNA转录水平相对定量研究[J]. 遗传, 2013, 35(1): 85-92. |
[13] | 杨小亮,白大章,邱巍,董慧琴,李大全,陈芳,马润林,Hugh T Blair,高剑峰. 以绵羊MHC区段BAC克隆酶切片段为探针杂交筛选绵羊混合组织cDNA文库[J]. 遗传, 2012, 34(7): 887-894. |
[14] | 杨剑波,甘尚权,杨永林,张红琳,宋天增,冯静,杨井泉,高磊,石国庆,沈敏. 绵羊ILK基因的克隆及其在毛囊生长期的表达[J]. 遗传, 2012, 34(6): 719-726. |
[15] | 李洪涛 何新 周志勇 赵松华 张文祥 刘钢 赵宗胜 贾斌. Slc7a11基因在不同被毛颜色哈萨克羊皮肤组织中的表达分析[J]. 遗传, 2012, 34(10): 1314-1319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: