遗传 ›› 2021, Vol. 43 ›› Issue (4): 295-307.doi: 10.16288/j.yczz.21-026
收稿日期:
2021-01-20
修回日期:
2021-03-01
出版日期:
2021-04-16
发布日期:
2021-03-15
通讯作者:
刘峰
E-mail:liuf@ioz.ac.cn
作者简介:
张春霞,博士,研究方向:造血干细胞发育。E-mail: 基金资助:
Received:
2021-01-20
Revised:
2021-03-01
Online:
2021-04-16
Published:
2021-03-15
Contact:
Liu Feng
E-mail:liuf@ioz.ac.cn
Supported by:
摘要:
血液系统是维持机体生命活动最重要的系统之一,为机体提供所需的氧气和营养物质,通过物质交换维持内环境的稳态,同时为机体提供免疫防御与保护。血细胞是血液的重要组成成分,机体中成熟血细胞类型起源于具有自我更新及分化潜能的多能成体干细胞—造血干细胞(hematopoietic stem cells, HSCs)。造血干细胞及各类血细胞产生、发育及成熟的过程称为造血过程,该过程开始于胚胎发育早期并贯穿整个生命过程,任一阶段出现异常都可能导致血液疾病的发生。因此,深入探究造血发育过程及其调控机制对于认识并治疗血液疾病至关重要。近年来,以小鼠(Mus musculus)和斑马鱼(Danio rerio)作为动物模型来研究造血发育取得了一系列的进展。其中,BMP、Notch和Wnt等信号通路对造血干细胞的命运决定和产生发挥了重要作用。本文对这些信号通路在小鼠和斑马鱼造血过程中的调控作用进行系统总结,以期能够完善造血发育过程的调控网络并为临床应用提供指导。
张春霞, 刘峰. 造血干细胞发育过程中的信号通路调控[J]. 遗传, 2021, 43(4): 295-307.
Zhang Chunxia, Liu Feng. Regulatory signaling pathways in hematopoietic stem cell development[J]. Hereditas(Beijing), 2021, 43(4): 295-307.
[1] |
Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell, 2008,132(4):631-644.
doi: 10.1016/j.cell.2008.01.025 pmid: 18295580 |
[2] |
Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells. Development, 1998,125(4):725-732.
pmid: 9435292 |
[3] |
Palis J, Robertson S, Kennedy M, Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development, 1999,126(22):5073-5084.
pmid: 10529424 |
[4] |
Chen MJ, Li Y, De Obaldia ME, Yang Q, Yzaguirre AD, Yamada-Inagawa T, Vink CS, Bhandoola A, Dzierzak E, Speck NA. Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. Cell Stem Cell, 2011,9(6):541-552.
doi: 10.1016/j.stem.2011.10.003 |
[5] |
McGrath KE, Frame JM, Fegan KH, Bowen JR, Conway SJ, Catherman SC, Kingsley PD, Koniski AD, Palis J. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep, 2015,11(12):1892-1904.
doi: 10.1016/j.celrep.2015.05.036 pmid: 26095363 |
[6] |
Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu BS, Jacobsen SEW, Pollard JW, Frampton J, Liu KJ, Geissmann F. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science, 2012,336(6077):86-90.
doi: 10.1126/science.1219179 pmid: 22442384 |
[7] |
Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald HR. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 2015,518(7540):547-551.
doi: 10.1038/nature13989 pmid: 25470051 |
[8] |
Böiers C, Carrelha J, Lutteropp M, Luc S, Green JCA, Azzoni E, Woll PS, Mead AJ, Hultquist A, Swiers G, Perdiguero EG, Macaulay IC, Melchiori L, Luis TC, Kharazi S, Bouriez-Jones T, Deng QL, Ponten A, Atkinson D, Jensen CT, Sitnicka E, Geissmann F, Godin I, Sandberg R, de Bruijn MFTR, Jacobsen SEW. Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell, 2013,13(5):535-548.
doi: 10.1016/j.stem.2013.08.012 |
[9] |
Müller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity, 1994,1(4):291-301.
doi: 10.1016/1074-7613(94)90081-7 pmid: 7889417 |
[10] |
Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HKA. The placenta is a niche for hematopoietic stem cells. Dev Cell, 2005,8(3):365-375.
doi: 10.1016/j.devcel.2004.12.016 pmid: 15737932 |
[11] |
Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature, 2010,464(7285):116-120.
doi: 10.1038/nature08764 pmid: 20154729 |
[12] |
Chen AT, Zon LI. Zebrafish blood stem cells. J Cell Biochem, 2009,108(1):35-42.
doi: 10.1002/jcb.22251 pmid: 19565566 |
[13] |
Detrich HW, Kieran MW, Chan FY, Barone LM, Yee K, Rundstadler JA, Pratt S, Ransom D, Zon LI. Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci USA, 1995,92(23):10713-10717.
doi: 10.1073/pnas.92.23.10713 pmid: 7479870 |
[14] |
Bertrand JY, Kim AD, Violette EP, Stachura DL, Cisson JL, Traver D. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development, 2007,134(23):4147-4156.
doi: 10.1242/dev.012385 pmid: 17959717 |
[15] |
Kissa K, Herbomel P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature, 2010,464(7285):112-115.
doi: 10.1038/nature08761 pmid: 20154732 |
[16] |
Patterson LJ, Gering M, Patient R. Scl is required for dorsal aorta as well as blood formation in zebrafish embryos. Blood, 2005,105(9):3502-3511.
doi: 10.1182/blood-2004-09-3547 pmid: 15644413 |
[17] |
Ren X, Gomez GA, Zhang B, Lin S. Scl isoforms act downstream of etsrp to specify angioblasts and definitive hematopoietic stem cells. Blood, 2010,115(26):5338-5346.
doi: 10.1182/blood-2009-09-244640 pmid: 20185582 |
[18] |
Zhen FH, Lan YH, Yan B, Zhang WQ, Wen ZL. Hemogenic endothelium specification and hematopoietic stem cell maintenance employ distinct Scl isoforms. Development, 2013,140(19):3977-3985.
doi: 10.1242/dev.097071 |
[19] |
North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, Fitzgerald GA, Daley GQ, Orkin SH, Zon LI. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 2007,447(7147):1007-1011.
doi: 10.1038/nature05883 pmid: 17581586 |
[20] |
Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA, 1996,93(8):3444-3449.
doi: 10.1073/pnas.93.8.3444 pmid: 8622955 |
[21] |
Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature, 2009,457(7231):887-891.
doi: 10.1038/nature07619 pmid: 19129762 |
[22] |
Lancrin C, Mazan M, Stefanska M, Patel R, Lichtinger M, Costa G, Vargel O, Wilson NK, Möröy T, Bonifer C, Göttgens B, Kouskoff V, Lacaud G. GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment. Blood, 2012,120(2):314-322.
doi: 10.1182/blood-2011-10-386094 |
[23] |
Eich C, Arlt J, Vink CS, Solaimani Kartalaei P, Kaimakis P, Mariani SA, van der Linden R, van Cappellen WA, Dzierzak E. In vivo single cell analysis reveals Gata2 dynamics in cells transitioning to hematopoietic fate. J Exp Med, 2018,215(1):233-248.
doi: 10.1084/jem.20170807 pmid: 29217535 |
[24] |
de Pater E, Kaimakis P, Vink CS, Yokomizo T, Yamada-Inagawa T, van der Linden R, Kartalaei PS, Camper SA, Speck N, Dzierzak E. Gata2 is required for HSC generation and survival. J Exp Med, 2013,210(13):2843-2850.
doi: 10.1084/jem.20130751 |
[25] |
Gao X, Johnson KD, Chang YI, Boyer ME, Dewey CN, Zhang J, Bresnick EH. Gata2 cis-element is required for hematopoietic stem cell generation in the mammalian embryo. J Exp Med, 2013,210(13):2833-2842.
doi: 10.1084/jem.20130733 |
[26] |
Patterson LJ, Gering M, Eckfeldt CE, Green AR, Verfaillie CM, Ekker SC, Patient R. The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish. Blood, 2006,109(6):2389-2398.
doi: 10.1182/blood-2006-02-003087 pmid: 17090656 |
[27] |
Butko E, Distel M, Pouget C, Weijts B, Kobayashi I, Ng K, Mosimann C, Poulain FE, McPherson A, Ni CW, Stachura DL, Del Cid N, Espín-Palazón R, Lawson ND, Dorsky R, Clements WK, Traver D. Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo. Development, 2015,142(6):1050-1061.
doi: 10.1242/dev.119180 pmid: 25758220 |
[28] |
Dobrzycki T, Mahony CB, Krecsmarik M, Koyunlar C, Rispoli R, Peulen-Zink J, Gussinklo K, Fedlaoui B, de Pater E, Patient R, Monteiro R. Deletion of a conserved Gata2 enhancer impairs haemogenic endothelium programming and adult Zebrafish haematopoiesis. Commun Biol, 2020,3(1):71.
doi: 10.1038/s42003-020-0798-3 pmid: 32054973 |
[29] |
Massagué J. TGF-β SIGNAL TRANSDUCTION. Annu Rev Biochem, 1998,67(1):753-791.
doi: 10.1146/annurev.biochem.67.1.753 |
[30] |
Wang RN, Green J, Wang ZL, Deng YL, Qiao M, Peabody M, Zhang Q, Ye JX, Yan ZJ, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL. Bone Morphogenetic Protein(BMP) signaling in development and human diseases. Genes Dis, 2014,1(1):87-105.
doi: 10.1016/j.gendis.2014.07.005 pmid: 25401122 |
[31] |
Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev, 2005,19(23):2783-2810.
doi: 10.1101/gad.1350705 pmid: 16322555 |
[32] |
Hata A, Seoane J, Lagna G, Montalvo E, Hemmati- Brivanlou A, Massagué J. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell, 2000,100(2):229-240.
doi: 10.1016/s0092-8674(00)81561-5 pmid: 10660046 |
[33] |
Kim DW, Lassar AB. Smad-dependent recruitment of a histone deacetylase/Sin3A complex modulates the bone morphogenetic protein-dependent transcriptional repressor activity of Nkx3.2. Mol Cell Biol, 2003,23(23):8704-8717.
doi: 10.1128/mcb.23.23.8704-8717.2003 pmid: 14612411 |
[34] |
Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev, 1998,12(2):186-197.
doi: 10.1101/gad.12.2.186 pmid: 9436979 |
[35] |
Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE , Heldin CH, ten Dijke P. Identification of Smad7, a TGFbeta- inducible antagonist of TGF-beta signalling. Nature, 1997,389(6651):631-635.
doi: 10.1038/39369 pmid: 9335507 |
[36] |
Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell, 2000,6(6):1365-1375.
doi: 10.1016/s1097-2765(00)00134-9 pmid: 11163210 |
[37] |
Sadlon TJ, Lewis ID, D'Andrea RJ. BMP4: its role in development of the hematopoietic system and potential as a hematopoietic growth factor. Stem Cells, 2004,22(4):457-474.
doi: 10.1634/stemcells.22-4-457 pmid: 15277693 |
[38] |
Pyati UJ, Webb AE, Kimelman D. Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development. Development, 2005,132(10):2333-2343.
doi: 10.1242/dev.01806 pmid: 15829520 |
[39] |
Gupta S, Zhu H, Zon LI, Evans T. BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis. Development, 2006,133(11):2177-2187.
doi: 10.1242/dev.02386 pmid: 16672337 |
[40] |
Wilkinson RN, Pouget C, Gering M, Russell AJ, Davies SG, Kimelman D, Patient R. Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta. Dev Cell, 2009,16(6):909-916.
doi: 10.1016/j.devcel.2009.04.014 pmid: 19531361 |
[41] |
Monteiro R, van Dinther M, Bakkers J, Wilkinson R, Patient R, ten Dijke P, Mummery C. Two novel type II receptors mediate BMP signalling and are required to establish left-right asymmetry in zebrafish. Dev Biol, 2008,315(1):55-71.
doi: 10.1016/j.ydbio.2007.11.038 pmid: 18222420 |
[42] |
Durand C, Robin C, Bollerot K, Baron MH, Ottersbach K, Dzierzak E. Embryonic stromal clones reveal developmental regulators of definitive hematopoietic stem cells. Proc Natl Acad Sci USA, 2007,104(52):20838-20843.
doi: 10.1073/pnas.0706923105 pmid: 18087045 |
[43] |
McReynolds LJ, Gupta S, Figueroa ME, Mullins MC, Evans T. Smad1 and Smad5 differentially regulate embryonic hematopoiesis. Blood, 2007,110(12):3881-3890.
doi: 10.1182/blood-2007-04-085753 pmid: 17761518 |
[44] |
Zhang CX, Lv JH, He QP, Wang SF, Gao Y, Meng AM, Yang X, Liu F. Inhibition of endothelial ERK signalling by Smad1/5 is essential for haematopoietic stem cell emergence. Nat Commun, 2014,5:3431.
doi: 10.1038/ncomms4431 pmid: 24614941 |
[45] |
Cook BD, Liu S, Evans T. Smad1 signaling restricts hematopoietic potential after promoting hemangioblast commitment. Blood, 2011,117(24):6489-6497.
doi: 10.1182/blood-2010-10-312389 |
[46] |
Lan Y, He WY, Li Z, Wang Y, Wang J, Gao J, Wang WL, Cheng T, Liu B, Yang X. Endothelial Smad4 restrains the transition to hematopoietic progenitors via suppression of ERK activation. Blood, 2014,123(14):2161-2171.
doi: 10.1182/blood-2013-09-526053 |
[47] |
Pimanda JE, Donaldson IJ, de Bruijn MFTR, Kinston S, Knezevic K, Huckle L, Piltz S, Landry JR, Green AR, Tannahill D, Göttgens B. The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity. Proc Natl Acad Sci USA, 2007,104(3):840-845.
doi: 10.1073/pnas.0607196104 pmid: 17213321 |
[48] |
Xu RH, Ault KT, Kim J, Park MJ, Hwang YS, Peng Y, Sredni D, Kung HF. Opposite effects of FGF and BMP-4 on embryonic blood formation: roles of PV.1 and GATA-2. Dev Biol, 1999,208(2):352-361.
doi: 10.1006/dbio.1999.9205 pmid: 10191050 |
[49] |
Pera EM, Ikeda A, Eivers E, De Robertis EM. Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev, 2003,17(24):3023-3028.
doi: 10.1101/gad.1153603 pmid: 14701872 |
[50] |
Yu PZ, Pan G, Yu J, Thomson JA. FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell, 2011,8(3):326-334.
doi: 10.1016/j.stem.2011.01.001 |
[51] |
Kopan R, Ilagan MXG. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell, 2009,137(2):216-233.
doi: 10.1016/j.cell.2009.03.045 pmid: 19379690 |
[52] |
Shawber CJ, Kitajewski J. Notch function in the vasculature: insights from zebrafish, mouse and man. Bioessays, 2004,26(3):225-234.
doi: 10.1002/bies.20004 pmid: 14988924 |
[53] |
Lomeli H, Castillo-Castellanos F. Notch signaling and the emergence of hematopoietic stem cells. Dev Dyn, 2020,249(11):1302-1317.
doi: 10.1002/dvdy.230 pmid: 32996661 |
[54] |
Butko E, Pouget C, Traver D. Complex regulation of HSC emergence by the Notch signaling pathway. Dev Biol, 2016,409(1):129-138.
doi: 10.1016/j.ydbio.2015.11.008 pmid: 26586199 |
[55] |
Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development, 2001,128(19):3675-3683.
pmid: 11585794 |
[56] |
Kumano K, Chiba S, Kunisato A, Sata M, Saito T, Nakagami-Yamaguchi E, Yamaguchi T, Masuda S, Shimizu K, Takahashi T, Ogawa S, Hamada Y, Hirai H. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity, 2003,18(5):699-711.
doi: 10.1016/S1074-7613(03)00117-1 |
[57] |
Grego-Bessa J, Luna-Zurita L, del Monte G, Bolós V, Melgar P, Arandilla A, Garratt AN, Zang H, Mukouyama YS, Chen HY, Shou WN, Ballestar E, Esteller M, Rojas A, Pérez-Pomares JM, de la Pompa JL. Notch signaling is essential for ventricular chamber development. Dev Cell, 2007,12(3):415-429.
doi: 10.1016/j.devcel.2006.12.011 pmid: 17336907 |
[58] |
Burns CE, Traver D, Mayhall E, Shepard JL, Zon LI. Hematopoietic stem cell fate is established by the Notch- Runx pathway. Genes Dev, 2005,19(19):2331-2342.
doi: 10.1101/gad.1337005 pmid: 16166372 |
[59] |
Robert-Moreno A, Guiu J, Ruiz-Herguido C, López ME, Inglés-Esteve J, Riera L, Tipping A, Enver T, Dzierzak E, Gridley T, Espinosa L, Bigas A. Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1. EMBO J, 2008,27(13):1886-1895.
doi: 10.1038/emboj.2008.113 pmid: 18528438 |
[60] |
Robert-Moreno A, Espinosa L, de la Pompa JL, Bigas A. RBPjkappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development, 2005,132(5):1117-1126.
doi: 10.1242/dev.01660 pmid: 15689374 |
[61] |
Guiu J, Bergen DJM, De Pater E, Islam ABMMK, Ayllón V, Gama-Norton L, Ruiz-Herguido C, González J, López-Bigas N, Menendez P, Dzierzak E, Espinosa L, Bigas A. Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence. J Exp Med, 2014,211(12):2411-2423.
doi: 10.1084/jem.20131857 |
[62] |
Gama-Norton L, Ferrando E, Ruiz-Herguido C, Liu ZY, Guiu J, Islam ABMMK, Lee SU, Yan MH, Guidos CJ, López-Bigas N, Maeda T, Espinosa L, Kopan R, Bigas A. Notch signal strength controls cell fate in the haemogenic endothelium. Nat Commun, 2015,6:8510.
doi: 10.1038/ncomms9510 pmid: 26465397 |
[63] |
Zhang PP, He QP, Chen DB, Liu WX, Wang L, Zhang CX, Ma DY, Li W, Liu B, Liu F. G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition. Cell Res, 2015,25(10):1093-1107.
doi: 10.1038/cr.2015.109 pmid: 26358189 |
[64] |
Richard C, Drevon C, Canto PY, Villain G, Bollérot K, Lempereur A, Teillet MA, Vincent C, Rosselló Castillo C, Torres M, Piwarzyk E, Speck NA, Souyri M, Jaffredo T. Endothelio-mesenchymal interaction controls runx1 expression and modulates the notch pathway to initiate aortic hematopoiesis. Dev Cell, 2013,24(6):600-611.
doi: 10.1016/j.devcel.2013.02.011 pmid: 23537631 |
[65] |
Swift MR, Weinstein BM. Arterial-venous specification during development. Circ Res, 2009,104(5):576-588.
doi: 10.1161/CIRCRESAHA.108.188805 pmid: 19286613 |
[66] |
He QP, Zhang CX, Wang L, Zhang PP, Ma DY, Lv JH, Liu F. Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates. Blood, 2015,125(7):1098-1106.
doi: 10.1182/blood-2014-09-601542 pmid: 25540193 |
[67] |
Espín-Palazón R, Stachura DL, Campbell CA, García- Moreno D, Del Cid N, Kim AD, Candel S, Meseguer J, Mulero V, Traver D. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell, 2014,159(5):1070-1085.
doi: 10.1016/j.cell.2014.10.031 |
[68] |
Liu ZB, Tu HQ, Kang YS, Xue YY, Ma DY, Zhao CT, Li HY, Wang L, Liu F. Primary cilia regulate hematopoietic stem and progenitor cell specification through Notch signaling in zebrafish. Nat Commun, 2019,10(1):1839.
doi: 10.1038/s41467-019-09403-7 pmid: 31015398 |
[69] |
Wei YL, Ma DY, Gao Y, Zhang CX, Wang L, Liu F. Ncor2 is required for hematopoietic stem cell emergence by inhibiting Fos signaling in zebrafish. Blood, 2014,124(10):1578-1585.
doi: 10.1182/blood-2013-11-541391 |
[70] |
Zhang CX, Chen YS, Sun BF, Wang L, Yang Y, Ma DY, Lv JH, Heng J, Ding YY, Xue YY, Lu XY, Xiao W, Yang YG, Liu F. m(6)A modulates haematopoietic stem and progenitor cell specification. Nature, 2017,549(7671):273-276.
doi: 10.1038/nature23883 pmid: 28869969 |
[71] |
Heng J, Lv P, Zhang YF, Cheng XJ, Wang L, Ma DY, Liu F. Rab5c-mediated endocytic trafficking regulates hematopoietic stem and progenitor cell development via Notch and AKT signaling. PLoS Biol, 2020,18(4):e3000696.
doi: 10.1371/journal.pbio.3000696 pmid: 32275659 |
[72] |
Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development, 2018,145(11).
doi: 10.1242/dev.164988 pmid: 29724757 |
[73] |
Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell, 2012,149(6):1192-1205.
doi: 10.1016/j.cell.2012.05.012 |
[74] |
Daulat AM, Borg JP. Wnt/Planar cell polarity signaling: new opportunities for cancer treatment. Trends Cancer, 2017,3(2):113-125.
doi: 10.1016/j.trecan.2017.01.001 pmid: 28718442 |
[75] |
De A. Wnt/Ca 2+ signaling pathway: a brief overview . Acta Biochim Biophys Sin (Shanghai), 2011,43(10):745-756.
doi: 10.1093/abbs/gmr079 |
[76] |
Kohn AD, Moon RT. Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium, 2005,38(3-4):439-446.
doi: 10.1016/j.ceca.2005.06.022 pmid: 16099039 |
[77] |
Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick-Cooper CL, Weidinger G, Puder M, Daley GQ, Moon RT, Zon LI. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell, 2009,136(6):1136-1147.
doi: 10.1016/j.cell.2009.01.015 pmid: 19303855 |
[78] |
Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, McKinney-Freeman S, Davidson AJ, Hammerschmidt M, Rentzsch F, Green JBA, Zon LI, Daley GQ. BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell, 2008,2(1):72-82.
doi: 10.1016/j.stem.2007.10.022 pmid: 18371423 |
[79] |
Ruiz-Herguido C, Guiu J, D'Altri T, Inglés-Esteve J, Dzierzak E, Espinosa L, Bigas A. Hematopoietic stem cell development requires transient Wnt/β-catenin activity. J Exp Med, 2012,209(8):1457-1468.
doi: 10.1084/jem.20120225 |
[80] |
Chanda B, Ditadi A, Iscove NN, Keller G. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell, 2013,155(1):215-227.
doi: 10.1016/j.cell.2013.08.055 |
[81] |
Clements WK, Kim AD, Ong KG, Moore JC, Lawson ND, Traver D. A somitic Wnt16/Notch pathway specifies haematopoietic stem cells. Nature, 2011,474(7350):220-224.
doi: 10.1038/nature10107 pmid: 21654806 |
[82] |
Kim AD, Melick CH, Clements WK, Stachura DL, Distel M, Panákova D, MacRae C, Mork LA, Crump JG, Traver D. Discrete Notch signaling requirements in the specification of hematopoietic stem cells. EMBO J, 2014,33(20):2363-2373.
doi: 10.15252/embj.201488784 |
[83] |
Lee Y, Manegold JE, Kim AD, Pouget C, Stachura DL, Clements WK, Traver D. FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling. Nat Commun, 2014,5:5583.
doi: 10.1038/ncomms6583 pmid: 25428693 |
[84] |
Genthe JR, Clements WK. R-spondin 1 is required for specification of hematopoietic stem cells through Wnt16 and Vegfa signaling pathways. Development, 2017,144(4):590-600.
doi: 10.1242/dev.139956 pmid: 28087636 |
[1] | 杜倍倍, 刘磊, 朱洋洋. RNA结合蛋白Roquin负调控STING依赖的果蝇天然免疫反应[J]. 遗传, 2020, 42(12): 1201-1210. |
[2] | 赵净颖, 段小花, 王秋婷, 黄英, 贾俊静, 豆腾飞. 动物骨代谢相关信号通路研究进展[J]. 遗传, 2020, 42(10): 979-992. |
[3] | 尹玲倩,冉金山,李菁菁,任鹏,张贤娴,刘益平. 禽类就巢性状的遗传调控[J]. 遗传, 2019, 41(5): 391-403. |
[4] | 吕赵劼, 王志浩, 卢淑娴, 刘沛蓉, 田静. 短指(趾)症及指(趾)骨发育的分子调控机制[J]. 遗传, 2019, 41(12): 1073-1083. |
[5] | 杨志, 姚俊, 曹新. FGF信号通路在内耳发育调控和毛细胞再生中的作用[J]. 遗传, 2018, 40(7): 515-524. |
[6] | 孙书国, 吴世安, 张雷. Hippo信号通路在果蝇遗传学研究中的发现与扩展[J]. 遗传, 2017, 39(7): 537-545. |
[7] | 吉新彦, 钟国轩, 赵斌. 哺乳动物Hippo信号通路分子机制研究进展[J]. 遗传, 2017, 39(7): 546-567. |
[8] | 张平平,佟鑫,张天乐,黎子琛,龚清秋. 植物Hippo信号通路研究进展[J]. 遗传, 2017, 39(7): 568-575. |
[9] | 顾远, 张雷, 余发星. Hippo信号通路在肠道稳态、再生及癌变过程中的作用及机制[J]. 遗传, 2017, 39(7): 588-596. |
[10] | 付思玲,赵婉滢,张雯婧,宋海,季红斌,汤楠. Hippo信号通路在肺发育、再生和疾病中的功能[J]. 遗传, 2017, 39(7): 597-606. |
[11] | 姚传波, 周鑫, 陈策实, 雷群英. Hippo信号通路在乳腺癌中的调控机制及作用[J]. 遗传, 2017, 39(7): 617-629. |
[12] | 包笑妹, 何晴, 王莹, 黄智慧, 袁增强. Hippo/YAP信号通路在神经系统中的作用及机制研究进展[J]. 遗传, 2017, 39(7): 630-641. |
[13] | 周欣,李伟芸,王红艳. MST1/2调控先天免疫的功能和机制[J]. 遗传, 2017, 39(7): 642-649. |
[14] | 余淑娟,耿晶,陈兰芬. Hippo信号通路调控免疫细胞的功能[J]. 遗传, 2017, 39(7): 650-658. |
[15] | 胡立桥,周兆才,田伟. Hippo信号通路结构生物学研究进展[J]. 遗传, 2017, 39(7): 659-674. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: