[1] Shen Y, Xiao A, Huang P, Wang WY, Zhu ZY, Zhang B. TALE nuclease engineering and targeted genome modification. Hereditas ( Beijing ), 2013, 35(4): 395-409. 沈延, 肖安, 黄鹏, 王唯晔, 朱作言, 张博. 类转录激活因子效应物核酸酶(TALEN)介导的基因组定点修饰技术. 遗传, 2013, 35(4): 395-409. [2] Gaj T, Gersbach CA, Barbas III CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol , 2013, 31(7): 397-405. [3] Zhou JW, Xu QP, Yao J, Yu SM, Cao SZ. CRISPR/Cas9 genome editing technique and its application in site-directed genome modification of animals. Hereditas ( Beijing ), 2015, 37(10): 1011-1020. 周金伟, 徐绮嫔, 姚婧, 余树民, 曹随忠. CRISPR/Cas9基因组编辑技术及其在动物基因组定点修饰中的应用. 遗传, 2015, 37(10): 1011-1020. [4] Wang QH, Huai C, Sun RL, Zhuang H, Chen HY, Fei J, Lu DR. A quick and efficient method to generate hemophilia B mouse models by the CRISPR/Cas system. Hereditas ( Beijing ), 2015, 37(11): 1143-1148. 汪启翰, 怀聪, 孙瑞林, 庄华, 陈红岩, 费俭, 卢大儒. 利用CRISPR/Cas系统快速高效构建血友病乙小鼠模型. 遗传, 2015, 37(11): 1143-1148. [5] Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc , 2016, 11(1): 118-133. [6] Zu Y, Tong XJ, Wang ZX, Liu D, Pan RC, Li Z, Hu YY, Luo Z, Huang P, Wu Q, Zhu ZY, Zhang B, Lin S. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods , 2013, 10(4): 329-331. [7] Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T, Yamanaka S, Hotta A. Precise correction of the Dystrophin gene in Duchenne Muscular Dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep , 2015, 4(1): 143-154. [8] Zhou YX, Zhu SY, Cai CZ, Yuan PF, Li CM, Huang YY, Wei WS. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature , 2014, 509(7501): 487-491. [9] Kim HS, Hromas R, Lee SH. Emerging features of DNA double-strand break repair in humans. In: Chen C, ed. New research directions in DNA repair. INTECH, 2013: 187-211. [10] Mao ZY, Bozzella M, Seluanov A, Gorbunova V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle , 2008, 7(18): 2902-2906. [11] Böttcher R, Hollmann M, Merk K, Nitschko V, Obermaier C, Philippou-Massier J, Wieland I, Gaul U, Förstemann K. Efficient chromosomal gene modification with CRISPR/ Cas9 and PCR-based homologous recombination donors in cultured Drosophila cells. Nucleic Acids Res , 2014, 42(11): e89. [12] Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci USA , 2008, 105(50): 19821-19826. [13] Bozas A, Beumer KJ, Trautman JK, Carroll D. Genetic analysis of zinc-finger nuclease-induced gene targeting in Drosophila . Genetics , 2009, 182(3): 641-651. [14] Qi YP, Zhang Y, Zhang F, Baller JA, Cleland SC, Ryu Y, Starker CG, Voytas DF. Increasing frequencies of site- specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res , 2013, 23(3): 547-554. [15] Morton J, Davis MW, Jorgensen EM, Carroll D. Induction and repair of zinc-finger nuclease-targeted double- strand breaks in Caenorhabditi selegans somatic cells. Proc Natl Acad Sci USA , 2006, 103(44): 16370-16375. [16] Ma SY, Chang JS, Wang XG, Liu YY, Zhang JD, Lu W, Gao J, Shi R, Zhao P, Xia QY. CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori . Sci Rep , 2014, 4: 4489. [17] Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol , 2015, 33(5): 543-548. [18] Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol , 2015, 33(5): 538-542. [19] Seluanov A, Mao ZY, Gorbunova V. Analysis of DNA double-strand break (DSB) repair in mammalian cells. J Vis Exp , 2010, (43): e2002. [20] Barnes DE, Stamp G, Rosewell I, Denzel A, Lindahl T. Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr Biol , 1998, 8(25): 1395-1398. [21] Vriend LE, Jasin M, Krawczyk PM. Assaying break and nick-induced homologous recombination in mammalian cells using the DR-GFP reporter and Cas9 nucleases. Methods Enzymol , 2014, 546: 175-191. [22] Li WJ, Yang J, Wang CH, Luo J, Zhou P, Huang W, Yao JL, He GM, Pi WH. Optimization of an electrotransfer solution-L for Ovis Aries fibroblasts. Xinjiang Agricultural Sciences , 2015, 52(8): 1481-1485. 李炜杰, 杨娇, 王聪慧, 罗健, 周平, 黄威, 姚建龙, 何高明, 皮文辉. 电转液L对绵羊成纤维细胞电转染条件优化. 新疆农业科学, 2015, 52(8): 1481-1485. [23] Seluanov A, Mittelman D, Pereira-Smith OM, Wilson JH, Gorbunova V. DNA end joining becomes less efficient and more error-prone during cellular senescence. Proc Natl Acad Sci USA , 2004, 101(20): 7624-7629. [24] Taleei R, Nikjoo H. Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle. Mutat Res , 2013, 756(1-2): 206-212. [25] Gomez-Cabello D, Jimeno S, Fernández-Ávila MJ, Huertas P. New tools to study DNA double-strand break repair pathway choice. PLoS One , 2013, 8(10): e77206. [26] Kurosawa A, Saito S, So S, Hashimoto M, Iwabuchi K, Watabe H, Adachi N. DNA ligase IV and Artemis act cooperatively to suppress homologous recombination in human cells: implications for DNA double-strand break repair. PLoS One , 2013, 8(8): e72253. [27] Yang D, Scavuzzo MA, Chmielowiec J, Sharp R, Bajic A, Borowiak M. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep , 2016, 6: 21264. |