遗传 ›› 2020, Vol. 42 ›› Issue (11): 1073-1080.doi: 10.16288/j.yczz.20-180
收稿日期:
2020-06-16
修回日期:
2020-09-08
出版日期:
2020-11-20
发布日期:
2020-10-28
通讯作者:
刘志国
E-mail:liuzhiguo@caas.cn
作者简介:
王冰源,博士研究生,助理研究员,研究方向:动物遗传育种与繁殖。E-mail: 基金资助:
Bingyuan Wang, Yulian Mu, Kui Li, Zhiguo Liu()
Received:
2020-06-16
Revised:
2020-09-08
Online:
2020-11-20
Published:
2020-10-28
Contact:
Liu Zhiguo
E-mail:liuzhiguo@caas.cn
Supported by:
摘要:
干细胞技术是近年来被广泛应用于生命科学领域的重要技术。获取具有无限增殖能力和分化能力的干细胞系主要有3种途径:(1)从胚胎分离胚胎干细胞;(2)从成体组织分离成体干细胞;(3)通过体外诱导体细胞重编程为诱导多能干细胞。在农业领域中,畜禽干细胞的分离、培养、建系有望显著提升体细胞克隆和细胞水平基因修饰的效率;干细胞体外诱导配子技术能够极大简化基因编辑畜禽的制备流程,提升制备效率。同时,通过结合基因编辑、显微注射、干细胞移植、胚胎移植等技术,干细胞技术在基因编辑动物的生产、组织和器官的供体制备、体外配子诱导及遗传重组胚胎制备、疾病治疗靶点的筛选,以及新药药理研究等方面都具有极大的应用潜力,对农业动物的遗传改良、疾病防治具有重要意义。本文综述了干细胞相关研究在农业动物包括猪(Sus scrofa)、牛(Bos taurus)、鸡(Gallus gallus)、山羊(Capra hircus)和绵羊(Ovis aries)中的新进展,以期为农业动物干细胞领域的相关研究提供参考。
王冰源, 牟玉莲, 李奎, 刘志国. 农业动物干细胞研究进展[J]. 遗传, 2020, 42(11): 1073-1080.
Bingyuan Wang, Yulian Mu, Kui Li, Zhiguo Liu. Research progress of stem cells in agricultural animals[J]. Hereditas(Beijing), 2020, 42(11): 1073-1080.
[1] |
Evans MJ, Kaufman MH . Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981,292(5819):154-156.
doi: 10.1038/292154a0 pmid: 7242681 |
[2] |
Labat ML . Stem cells and the promise of eternal youth: embryonic versus adult stem cells. Biomed Pharmacother, 2001,55(4):179-185.
doi: 10.1016/S0753-3322(01)00057-9 |
[3] | Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006,126(4):663-676. |
[4] | Qin T, Miao XY . Current progress and application prospects of induced pluripotent stem cells. Hereditas (Beijing), 2010,32(12):1205-1214. |
秦彤, 苗向阳 . iPS细胞研究的新进展及应用. 遗传, 2010,32(12):1205-1214. | |
[5] | Goszczynski DE, Cheng H, Demyda-Peyrás S, Medrano JF, Wu J, Ross PJ . In vitro breeding: application of embryonic stem cells to animal production†. Biol Reprod, 2019,100(4):885-895. |
[6] |
Pieri NCG, de Souza AF, Botigelli RC, Machado LS, Ambrosio CE, Dos Santos Martins D, de Andrade AFC, Meirelles FV, Hyttel P, Bressan FF . Stem cells on regenerative and reproductive science in domestic animals. Vet Res Commun, 2019,43(1):7-16.
doi: 10.1007/s11259-019-9744-6 pmid: 30656543 |
[7] |
Yang JR, Shiue YL, Liao CH, Lin SZ, Chen LR . Establishment and characterization of novel porcine embryonic stem cell lines expressing hrGFP. Cloning Stem Cells, 2009,11(2):235-244.
doi: 10.1089/clo.2008.0050 pmid: 19508116 |
[8] |
Pawar SS, Malakar D, De AK, Akshey YS . Stem cell-like outgrowths from in vitro fertilized goat blastocysts. Indian J Exp Biol, 2009,47(8):635-642.
pmid: 19775069 |
[9] | Zhang YN, Yang HY, Zhang ZT, Shi QQ, Wang D, Zheng MM, Li BC, Song JZ . Isolation of chicken embryonic stem cell and preparation of chicken chimeric model. Mol Biol Rep, 2013,40(3):2149-2156. |
[10] | Haraguchi S, Kikuchi K, Nakai M, Tokunaga T . Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition. J Reprod Dev, 2012,58(6):707-716. |
[11] | Siriboon C, Lin YH, Kere M, Chen CD, Chen LR, Chen CH, Tu CF, Lo NW, Ju JC . Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning. PLoS One, 2015,10(2):e0118165. |
[12] | Esteban MA, Xu JY, Yang JY, Peng MX, Qin DJ, Li W, Jiang ZX, Chen JK, Deng K, Zhong M, Cai JL, Lai LX, Pei DQ . Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem, 2009,284(26):17634-17640. |
[13] | Chakritbudsabong W, Sariya L, Pamonsupornvichit S, Pronarkngver R, Chaiwattanarungruengpaisan S, Ferreira JN, Setthawong P, Phakdeedindan P, Techakumphu M, Tharasanit T, Rungarunlert S . Generation of a pig induced pluripotent stem cell (piPSC) line from embryonic fibroblasts by incorporating LIN28 to the four transcriptional factor- mediated reprogramming:VSMUi001-D. Stem Cell Res, 2017,24:21-24. |
[14] |
Gallegos-Cárdenas A, Webb R, Jordan E, West R, West FD, Yang JY, Wang K, Stice SL . Pig induced pluripotent stem cell-derived neural rosettes developmentally mimic human pluripotent stem cell neural differentiation. Stem Cells Dev, 2015,24(16):1901-1911.
doi: 10.1089/scd.2015.0025 pmid: 25826126 |
[15] | Webb RL, Gallegos-Cárdenas A, Miller CN, Solomotis NJ, Liu HX, West FD, Stice SL . Pig induced pluripotent stem cell-derived neural rosettes parallel human differentiation into sensory neural subtypes. Cell Reprogram, 2017,19(2):88-94. |
[16] |
Liao YJ, Tang PC, Chen YH, Chu FH, Kang TC, Chen LR, Yang JR . Porcine induced pluripotent stem cell-derived osteoblast-like cells prevent glucocorticoid-induced bone loss in Lanyu pigs. PLoS One, 2018,13(8):e0202155.
doi: 10.1371/journal.pone.0202155 pmid: 30157199 |
[17] | Talbot NC, Blomberg LA, Garrett WM, Caperna TJ . Feeder-independent continuous culture of the PICM-19 pig liver stem cell line. In Vitro Cell Dev Biol Anim, 2010,46(9):746-757. |
[18] |
Talbot NC, Caperna TJ . A feeder-cell independent subpopulation of the PICM-19 pig liver stem cell line capable of long-term growth and extensive expansion. Cytotechnology, 2014,66(1):1-7.
pmid: 23397443 |
[19] | Xu JJ, Yu LQ, Guo JX, Xiang JZ, Zheng Z, Gao DF, Shi BB, Hao HY, Jiao DL, Zhong L, Wang Y, Wu J, Wei HJ, Han JY . Generation of pig induced pluripotent stem cells using an extended pluripotent stem cell culture system. Stem Cell Res Ther, 2019,10(1):193. |
[20] |
Zheng Y, Feng TY, Zhang PF, Lei PP, Li FY, Zeng WX . Establishment of cell lines with porcine spermatogonial stem cell properties. J Anim Sci Biotechnol, 2020,11:33.
doi: 10.1186/s40104-020-00439-0 pmid: 32308978 |
[21] | Huang L, Niu CG, Willard B, Zhao WM, Liu L, He W, Wu TW, Yang SL, Feng ST, Mu YL, Zheng LM, Li K . Proteomic analysis of porcine mesenchymal stem cells derived from bone marrow and umbilical cord: implication of the proteins involved in the higher migration capability of bone marrow mesenchymal stem cells. Stem Cell Res Ther, 2015,6(1):77. |
[22] |
Gao Q, Xia Y, Liu L, Huang L, Liu Y, Zhang X, Xu K, Wei JL, Hu YQ, Mu YL, Li K . Galectin-3 enhances migration of minature pig bone marrow mesenchymal stem cells through inhibition of RhoA-GTP activity. Sci Rep, 2016,6:26577.
pmid: 27215170 |
[23] | Han W, He X, Zhang MZ, Hu SX, Sun F, Ren LP, Hua JL, Peng S . Establishment of a porcine pancreatic stem cell line using T-REx(™) system-inducible Wnt3a expression. Cell Prolif, 2015,48(3):301-310. |
[24] |
Gurel Pekozer G, Ramazanoglu M, Schlegel KA, Kok FN, Torun Kose G . Role of STRO-1 sorting of porcine dental germ stem cells in dental stem cell-mediated bone tissue engineering. Artif Cells Nanomed Biotechnol, 2018,46(3):607-618.
doi: 10.1080/21691401.2017.1332637 pmid: 28562085 |
[25] | Lermen D, Gorjup E, Dyce PW, von Briesen H, Müller P. Neuro-muscular differentiation of adult porcine skin derived stem cell-like cells. PLoS One, 2010,5(1):e8968. |
[26] | Stieler Stewart A, Freund JM, Blikslager AT, Gonzalez LM . Intestinal stem cell isolation and culture in a porcine model of segmental small intestinal ischemia. J Vis Exp, 2018, ( 135):57647. |
[27] | Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA, Zhong CQ, Sakurai M, Sampaio RV, Suzuki K, Izpisua Belmonte JC, Ross PJ . Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc Natl Acad Sci USA, 2018,115(9):2090-2095. |
[28] | Hill ABT, Bressan FF, Murphy BD, Garcia JM . Applications of mesenchymal stem cell technology in bovine species. Stem Cell Res Ther, 2019,10(1):44. |
[29] |
Pillai VV, Kei TG, Reddy SE, Das M, Abratte C, Cheong SH, Selvaraj V . Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance. Anim Sci J, 2019,90(9):1149-1160.
doi: 10.1111/asj.13272 pmid: 31322312 |
[30] |
Pipino C, Mandatori D, Buccella F, Lanuti P, Preziuso A, Castellani F, Grotta L, Di Tomo P, Marchetti S, Di Pietro N, Cichelli A, Pandolfi A, Martino G . Identification and characterization of a stem cell-like population in bovine milk: a potential new source for regenerative medicine in veterinary. Stem Cells Dev, 2018,27(22):1587-1597.
doi: 10.1089/scd.2018.0114 pmid: 30142991 |
[31] |
Kumar De A, Malakar D, Akshey YS, Jena MK, Dutta R . Isolation and characterization of embryonic stem cell-like cells from in vitro produced goat( Capra hircus) embryos. Anim Biotechnol, 2011,22(4):181-196.
doi: 10.1080/10495398.2011.622189 |
[32] |
Garg S, Dutta R, Malakar D, Jena MK, Kumar D, Sahu S, Prakash B . Cardiomyocytes rhythmically beating generated from goat embryonic stem cell. Theriogenology, 2012,77(5):829-839.
doi: 10.1016/j.theriogenology.2011.05.029 |
[33] |
Song WC, Mu HL, Wu J, Liao MZ, Zhu HJ, Zheng LM, He X, Niu BW, Zhai YX, Bai CL, Lei AM, Li GP, Hua JL. miR-544 Regulates dairy goat male germline stem cell self-renewal via targeting PLZF. J Cell Biochem, 2015,116(10):2155-2165.
doi: 10.1002/jcb.25172 pmid: 25808723 |
[34] | Mrozik KM, Zilm PS, Bagley CJ, Hack S, Hoffmann P, Gronthos S, Bartold PM . Proteomic characterization of mesenchymal stem cell-like populations derived from ovine periodontal ligament, dental pulp, and bone marrow: analysis of differentially expressed proteins. Stem Cells Dev, 2010,19(10):1485-1499. |
[35] | Fadel L, Viana BR, Feitosa MLT, Ercolin ACM, Roballo KCS, Casals JB, Pieri NCG, Meirelles FV, Martins DDS, Miglino MA, Ambrósio CE . Protocols for obtainment and isolation of two mesenchymal stem cell sources in sheep. Acta Cir Bras, 2011,26(4):267-273. |
[36] |
Zhang L, Wu YN, Li X, Wei S, Xing YM, Lian Z, Han HB . An alternative method for long-term culture of chicken embryonic stem cell in vitro. Stem Cells Int, 2018,2018:2157451.
pmid: 29861740 |
[37] |
Farzaneh M, Attari F, Mozdziak PE, Khoshnam SE . The evolution of chicken stem cell culture methods. Br Poult Sci, 2017,58(6):681-686.
doi: 10.1080/00071668.2017.1365354 pmid: 28840744 |
[38] | Zuo QS, Jin K, Wang YJ, Song JZ, Zhang YN, Li BC . CRISPR/Cas9-mediated deletion of C1EIS inhibits chicken embryonic stem cell differentiation into male germ cells (Gallus gallus). J Cell Biochem, 2017,118(8):2380-2386. |
[39] |
He NN, Wang YL, Zhang C, Wang M, Wang YJ, Zuo QS, Zhang YN, Li BC . Wnt signaling pathway regulates differentiation of chicken embryonic stem cells into spermatogonial stem cells via Wnt5a. J Cell Biochem, 2018,119(2):1689-1701.
pmid: 28786525 |
[40] | Wang M, Zhang C, Huang CL, Cheng SZ, He NN, Wang YL, Ahmed MF, Zhao RF, Jin J, Zuo QS, Zhang YN, Li BC . Regulation of fibroblast growth factor 8 (FGF8) in chicken embryonic stem cells differentiation into spermatogonial stem cells. J Cell Biochem, 2018,119(2):2396-2407. |
[41] |
Zhang C, Wang M, He NN, Ahmed MF, Wang YL, Zhao RF, Yu XJ, Jin J, Song JZ, Zuo QS, Zhang YN, Li BC . Hsd3b2 associated in modulating steroid hormone synthesis pathway regulates the differentiation of chicken embryonic stem cells into spermatogonial stem cells. J Cell Biochem, 2018,119(1):1111-1121.
pmid: 28703914 |
[42] |
Jin J, Zhao RF, Chen C, Zhou J, Lu ZY, Jin K, Zhang C, Wang M, Sun CH, Wang YJ, Zhang WH, Li TT, Zuo QS, Zhang YN, Chen GH, Li BC . The Lbc gene promotes differentiation of chicken embryo stem cell into spermatogonial stem cells via the regulation of transcriptional factor Hoxa5. J Cell Biochem, 2019, doi: 10.1002/jcb.27760.
pmid: 32918333 |
[1] | 马钧, 樊安平, 王武生, 张金川, 江晓军, 马瑞军, 贾社强, 刘飞, 雷初朝, 黄永震. 全基因组重测序解析秦川牛保种群遗传多样性和遗传结构[J]. 遗传, 2023, 45(7): 602-616. |
[2] | 高智慧, 黄佳新, 罗昊玉, 徐海冬, 娄明, 宁博林, 邢晓旭, 牟芳, 李辉, 王宁. 鸡NRG4基因组及转录本结构分析[J]. 遗传, 2023, 45(5): 447-458. |
[3] | 龚一鸣, 王翔宇, 贺小云, 刘玉芳, 余平, 储明星, 狄冉. 绵羊FecB突变对BMPR1B活性及BMP/SMAD通路的影响研究进展[J]. 遗传, 2023, 45(4): 295-305. |
[4] | 田智琛, 尹晓娟. 诱导多能干细胞在儿童疾病的应用研究进展[J]. 遗传, 2023, 45(1): 42-51. |
[5] | 李亚楠, 张贤君, 张宁, 梁雅琳, 张宇星, 招华兴, 李紫聪, 黄思秀. 过表达组蛋白H3K9me3去甲基化酶对猪克隆胚胎发育的影响[J]. 遗传, 2023, 45(1): 67-77. |
[6] | 高菲, 王煜, 杜嘉祥, 杜旭光, 赵建国, 潘登科, 吴森, 赵要风. 遗传修饰猪模型在生物医学及农业领域研究进展及应用[J]. 遗传, 2023, 45(1): 6-28. |
[7] | 郭彦, 杨乐乐, 戚华宇. 小鼠雄性生殖干细胞转录组分析揭示成熟精原干细胞特征[J]. 遗传, 2022, 44(7): 591-608. |
[8] | 宋绍征, 何正义, 成勇, 于宝利, 张婷, 李丹. TALENs介导MSTN基因突变山羊的制备及性能分析[J]. 遗传, 2022, 44(6): 531-542. |
[9] | 余志鑫, 李鹏宇, 李凯, 缪时英, 王琳芳, 宋伟. 精原干细胞微环境研究进展[J]. 遗传, 2022, 44(12): 1103-1116. |
[10] | 张祉靖, 乔钰, 孙宇晨, 雷蕾. 表观“阅读器”BET蛋白家族对哺乳动物发育和iPSC重编程的调控[J]. 遗传, 2022, 44(1): 36-45. |
[11] | 唐湘薇, 楚丹, 颜赛娜, 尹艳飞, 卞桥, 翁波, 陈斌, 冉茂良. miR-191靶向BDNF基因通过激活PI3K/AKT信号通路促进猪未成熟支持细胞增殖[J]. 遗传, 2021, 43(7): 680-693. |
[12] | 王海涛, 李亭亭, 黄勋, 马润林, 刘秋月. 遗传修饰技术在绵羊分子设计育种中的应用[J]. 遗传, 2021, 43(6): 580-600. |
[13] | 张春霞, 刘峰. 造血干细胞发育过程中的信号通路调控[J]. 遗传, 2021, 43(4): 295-307. |
[14] | 周子文, 王雪, 丁向东. 基于高密度SNP标记估计群体间遗传关联[J]. 遗传, 2021, 43(4): 340-349. |
[15] | 邹娴, 何燕华, 何静怡, 王艳, 舒鼎铭, 罗成龙. 鸡原始生殖细胞转染条件优化[J]. 遗传, 2021, 43(3): 280-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: