遗传 ›› 2021, Vol. 43 ›› Issue (11): 1038-1049.doi: 10.16288/j.yczz.21-206
收稿日期:
2021-06-10
修回日期:
2021-08-29
出版日期:
2021-11-20
发布日期:
2021-10-14
通讯作者:
郑英
E-mail:1499356709@qq.com;yzzkl@163.com
作者简介:
葛婷婷,在读硕士研究生,专业方向:生殖医学。E-mail: 基金资助:
Tingting Ge(), Lu Yuan, Wenhua Xu, Ying Zheng()
Received:
2021-06-10
Revised:
2021-08-29
Online:
2021-11-20
Published:
2021-10-14
Contact:
Zheng Ying
E-mail:1499356709@qq.com;yzzkl@163.com
Supported by:
摘要:
纤毛/鞭毛是真核生物细胞表面伸出的进化保守的细胞器,独特的位置和特性使它们在细胞运动和信号传递等生命过程发挥重要作用。哺乳动物纤毛/鞭毛的组装和维持都依赖纤毛/鞭毛内运输(intraflagellar transport, IFT)。IFT是由IFT复合体A和复合体B在驱动蛋白或马达蛋白驱动下的双向运输系统。该过程可将货物蛋白在胞体的合成位点与纤毛/鞭毛尖端的装配位点之间进行运输。鞭毛是哺乳动物精子产生动力的特异性细胞器,其完整性对精子正常功能至关重要。近年来研究表明,IFT在哺乳动物精子鞭毛形成和雄性生殖能力方面必不可少。本文对参与IFT的蛋白在精子鞭毛形成中的作用和机制进行了综述,以探讨其在男性不育症中的发病机制,为不育症的诊断和治疗提供理论基础。
葛婷婷, 袁露, 徐文华, 郑英. 哺乳动物纤毛/鞭毛内运输在精子形成中的作用及机制研究进展[J]. 遗传, 2021, 43(11): 1038-1049.
Tingting Ge, Lu Yuan, Wenhua Xu, Ying Zheng. Role and mechanism of intraflagellar transport in mammalian spermiogenesis[J]. Hereditas(Beijing), 2021, 43(11): 1038-1049.
[1] |
Sloboda RD. Purification and localization of intraflagellar transport particles and polypeptides. Methods Mol Biol, 2009, 586:207-225.
doi: 10.1007/978-1-60761-376-3_11 pmid: 19768432 |
[2] |
Taschner M, Bhogaraju S, Lorentzen E. Architecture and function of IFT complex proteins in ciliogenesis. Differentiation, 2012, 83(2):S12-22.
doi: 10.1016/j.diff.2011.11.001 |
[3] |
Avidor-Reiss T, Carr A, Fishman EL. The sperm centrioles. Mol Cell Endocrinol, 2020, 518:110987.
doi: 10.1016/j.mce.2020.110987 pmid: 32810575 |
[4] |
Lechtreck KF. IFT-cargo interactions and protein transport in cilia. Trends Biochem Sci, 2015, 40(12):765-778.
doi: S0968-0004(15)00176-0 pmid: 26498262 |
[5] |
Taschner M, Lorentzen E. The intraflagellar transport machinery. Cold Spring Harb Perspect Biol, 2016, 8(10):a028092.
doi: 10.1101/cshperspect.a028092 |
[6] |
Liu H, Li W, Zhang Y, Zhang ZG, Shang XJ, Zhang L, Zhang SY, Li YW, Somoza AV, Delpi B, Gerton GL, Foster JA, Hess RA, Pazour GJ, Zhang ZB. IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is essential for sperm flagella formation. Biol Reprod, 2017, 96(5):993-1006.
doi: 10.1093/biolre/iox029 |
[7] |
Keady BT, Samtani R, Tobita K, Tsuchya M, San Agustin JT, Follit JA, Jonassen JA, Subramanian R, Lo CW, Pazour GJ. IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport. Dev Cell, 2012, 22(5):940-951.
doi: 10.1016/j.devcel.2012.04.009 |
[8] |
Eddy EM, Toshimori K, O'Brien DA. Fibrous sheath of mammalian spermatozoa. Microsc Res Tech, 2003, 61(1):103-115.
doi: 10.1002/jemt.10320 |
[9] |
Bellyei S, Szigeti A, Boronkai A, Pozsgai E, Gomori E, Melegh B, Janaky T, Bognar Z, Hocsak E, Sumegi B, Gallyas F Jr. Inhibition of cell death by a novel 16.2 kD heat shock protein predominantly via Hsp90 mediated lipid rafts stabilization and Akt activation pathway. Apoptosis, 2007, 12(1):97-112.
doi: 10.1007/s10495-006-0486-x |
[10] |
Levental I, Veatch S. The continuing mystery of lipid rafts. J Mol Biol, 2016, 428(24 Pt A):4749-4764.
doi: 10.1016/j.jmb.2016.08.022 pmid: 27575334 |
[11] |
Zhu LH, Inaba K. Lipid rafts function in Ca2+ signaling responsible for activation of sperm motility and chemotaxis in the ascidian ciona intestinalis. Mol Reprod Dev, 2011, 78(12):920-929.
doi: 10.1002/mrd.21382 |
[12] |
Lucker BF, Behal RH, Qin H, Siron LC, Taggart WD, Rosenbaum JL, Cole DG. Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits. J Biol Chem, 2005, 280(30):27688-27696.
pmid: 15955805 |
[13] |
Zhang Y, Liu H, Li W, Zhang ZG, Shang XJ, Zhang D, Li YH, Zhang SY, Liu JP, Hess RA, Pazour GJ, Zhang Z. Intraflagellar transporter protein (IFT27), an IFT25 binding partner, is essential for male fertility and spermiogenesis in mice. Dev Biol, 2017, 432(1):125-139.
doi: S0012-1606(17)30463-3 pmid: 28964737 |
[14] |
Kanie T, Abbott KL, Mooney NA, Plowey ED, Demeter J, Jackson PK. The CEP19-RABL2 GTPase complex binds IFT-B to initiate intraflagellar transport at the ciliary base. Dev Cell, 2017, 42(1):22-36.
doi: 10.1016/j.devcel.2017.05.016 |
[15] |
Nishijima Y, Hagiya Y, Kubo T, Takei R, Katoh Y, Nakayama K. RABL2 interacts with the intraflagellar transport-B complex and CEP19 and participates in ciliary assembly. Mol Biol Cell, 2017, 28(12):1652-1666.
doi: 10.1091/mbc.E17-01-0017 pmid: 28428259 |
[16] |
Shi L, Zhou T, Huang Q, Zhang SY, Li W, Zhang L, Hess RA, Pazour GJ, Zhang ZB. Intraflagellar transport protein 74 is essential for spermatogenesis and male fertility in mice. Biol Reprod, 2019, 101(1):188-199.
doi: 10.1093/biolre/ioz071 |
[17] |
Lucker BF, Miller MS, Dziedzic SA, Blackmarr PT, Cole DG. Direct interactions of intraflagellar transport complex B proteins IFT88, IFT52, and IFT46. J Biol Chem, 2010, 285(28):21508-21518.
doi: 10.1074/jbc.M110.106997 pmid: 20435895 |
[18] |
Wang ZH, Fan ZC, Williamson SM, Qin HM. Intraflagellar transport (IFT) protein IFT25 is a phosphoprotein component of IFT complex B and physically interacts with IFT27 in chlamydomonas. PLoS One, 2009, 4(5):e5384.
doi: 10.1371/journal.pone.0005384 |
[19] |
Brown JM, Cochran DA, Craige B, Kubo T, Witman GB. Assembly of IFT trains at the ciliary base depends on IFT74. Curr Biol, 2015, 25(12):1583-1593.
doi: 10.1016/j.cub.2015.04.060 |
[20] |
Qu W, Yuan S, Quan C, Huang Q, Zhou Q, Yap Y, Shi L, Zhang D, Guest T, Li W, Yee SP, Zhang L, Cazin C, Hess RA, Ray PF, Kherraf ZE, Zhang ZB. The essential role of intraflagellar transport protein IFT81 in male mice spermiogenesis and fertility. Am J Physiol Cell Physiol, 2020, 318(6):C1092-C1106.
doi: 10.1152/ajpcell.00450.2019 |
[21] |
Wang ZY, Shi YQ, Ma SH, Huang Q, Yap YT, Shi L, Zhang SY, Zhou T, Li W, Hu B, Zhang L, Krawetz SA, Pazour GJ, Hess RA, Zhang ZB. Abnormal fertility, acrosome formation, IFT20 expression and localization in conditional Gmap210 knockout mice. Am J Physiol Cell Physiol, 2020, 318(1):C174-C190.
doi: 10.1152/ajpcell.00517.2018 |
[22] |
Kierszenbaum AL, Rivkin E, Tres LL, Yoder BK, Haycraft CJ, Bornens M, Rios RM. GMAP210 and IFT88 are present in the spermatid golgi apparatus and participate in the development of the acrosome-acroplaxome complex, head-tail coupling apparatus and tail. Dev Dyn, 2011, 240(3):723-736.
doi: 10.1002/dvdy.22563 |
[23] |
San Agustin JT, Pazour GJ, Witman GB. Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm. Mol Biol Cell, 2015, 26(24):4358-4372.
doi: 10.1091/mbc.E15-08-0578 |
[24] |
Keady BT, Le YZ, Pazour GJ. IFT20 is required for opsin trafficking and photoreceptor outer segment development. Mol Biol Cell, 2011, 22(7):921-930.
doi: 10.1091/mbc.e10-09-0792 |
[25] |
Zhang ZG, Li W, Zhang Y, Zhang L, Teves ME, Liu H, Strauss JF 3rd, Pazour GJ, Foster JA, Hess RA, Zhang ZB. Intraflagellar transport protein IFT20 is essential for male fertility and spermiogenesis in mice. Mol Biol Cell, 2016, 27(23):3705-3716.
doi: 10.1091/mbc.e16-05-0318 |
[26] |
Pampliega O, Orhon I, Patel B, Sridhar S, Díaz-Carretero A, Beau I, Codogno P, Satir BH, Satir P, Cuervo AM. Functional interaction between autophagy and ciliogenesis. Nature, 2013, 502(7470):194-200.
doi: 10.1038/nature12639 |
[27] |
Joo K, Kim CG, Lee MS, Moon HY, Lee SH, Kim MJ, Kweon HS, Park WY, Kim CH, Gleeson JG, Kim J. CCDC41 is required for ciliary vesicle docking to the mother centriole. Proc Natl Acad Sci USA, 2013, 110(15):5987-5992.
doi: 10.1073/pnas.1220927110 |
[28] |
Zhang L, Zhen JK, Huang Q, Liu H, Li W, Zhang SY, Min J, Li YH, Shi L, Woods J, Chen XQ, Shi YQ, Liu YH, Hess RA, Song SZ, Zhang ZB. Mouse spermatogenesis- associated protein 1 (SPATA1), an IFT20 binding partner, is an acrosomal protein. Dev Dyn, 2020, 249(4):543-555.
doi: 10.1002/dvdy.v249.4 |
[29] |
Liang YW, Pang YN, Wu Q, Hu ZF, Han X, Xu YS, Deng HT, Pan JM. FLA8/KIF3B phosphorylation regulates kinesin-II interaction with IFT-B to control IFT entry and turnaround. Dev Cell, 2014, 30(5):585-597.
doi: 10.1016/j.devcel.2014.07.019 |
[30] | Zhang SY, Liu YH, Huang Q, Yuan S, Liu H, Shi L, Yap YT, Li W, Zhen JK, Zhang L, Hess RA, Zhang ZB. Murine germ cell-specific disruption of Ift172 causes defects in spermiogenesis and male fertility. Reproduction, 2020, 159(4):409-421. |
[31] | Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech, 2010, 73(4):279-319. |
[32] |
Lehti MS, Sironen A. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction, 2016, 151(4):R43-54.
doi: 10.1530/REP-15-0310 |
[33] |
Yang H, Huang K. Dissecting the vesicular trafficking function of IFT subunits. Front Cell Dev Biol, 2020, 7:352.
doi: 10.3389/fcell.2019.00352 |
[34] |
Absalon S, Blisnick T, Kohl L, Toutirais G, Doré G, Julkowska D, Tavenet A, Bastin P. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol Biol Cell, 2008, 19(3):929-944.
doi: 10.1091/mbc.e07-08-0749 |
[35] |
Zhu B, Zhu X, Wang LM, Liang YW, Feng QF, Pan JM. Functional exploration of the IFT-A complex in intraflagellar transport and ciliogenesis. PLoS Genet, 2017, 13(2):e1006627.
doi: 10.1371/journal.pgen.1006627 |
[36] | Wang X, Sha YW, Wang WT, Cui YQ, Chen J, Yan W, Hou XT, Mei LB, Yu CC, Wang JH. Novel IFT140 variants cause spermatogenic dysfunction in humans. Mol Genet Genomic Med, 2019, 7(9):e920. |
[37] |
Zhang Y, Liu H, Li W, Zhang ZG, Zhang SY, Teves ME, Stevens C, Foster JA, Campbell GE, Windle JJ, Hess RA, Pazour GJ, Zhang ZB. Intraflagellar transporter protein 140 (IFT140), a component of IFT-A complex, is essential for male fertility and spermiogenesis in mice. Cytoskeleton (Hoboken), 2018, 75(2):70-84.
doi: 10.1002/cm.21427 pmid: 29236364 |
[38] |
Hirano T, Katoh Y, Nakayama K. Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled receptors. Mol Biol Cell, 2017, 28(3):429-439.
doi: 10.1091/mbc.e16-11-0813 |
[39] |
Ni XQ, Wang JJ, Lv MR, Liu CY, Zhong YD, Tian SX, Wu H, Cheng HR, Gao Y, Tan Q, Chen BL, Li Q, Song B, Wei ZL, Zhou P, He XJ, Zhang F, Cao YX. A novel homozygous mutation in WDR19 induces disorganization of microtubules in sperm flagella and nonsyndromic asthenoteratospermia. J Assist Reprod Genet, 2020, 37(6):1431-1439.
doi: 10.1007/s10815-020-01770-1 |
[40] |
Li W, Mukherjee A, Wu JH, Zhang L, Teves ME, Li HF, Nambiar S, Henderson SC, Horwitz AR, Strauss JF III, Fang XJ, Zhang ZB. Sperm associated antigen 6 (SPAG6) regulates fibroblast cell growth, morphology, migration and ciliogenesis. Sci Rep, 2015, 5:16506.
doi: 10.1038/srep16506 |
[41] |
Liem KF Jr, Ashe A, He M, Satir P, Moran J, Beier D, Wicking C, Anderson KV. The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. J Cell Biol, 2012, 197(6):789-800.
doi: 10.1083/jcb.201110049 |
[42] |
Mykytyn K, Mullins RF, Andrews M, Chiang AP, Swiderski RE, Yang BL, Braun T, Casavant T, Stone EM, Sheffield VC. Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc Natl Acad Sci USA, 2004, 101(23):8664-8669.
doi: 10.1073/pnas.0402354101 |
[43] |
Liu WJ, He XJ, Yang SM, Zouari R, Wang JX, Wu H, Kherraf ZE, Liu CY, Coutton C, Zhao R, Tang DD, Tang SY, Lv MR, Fang YY, Li WY, Li H, Zhao JY, Wang X, Zhao SM, Zhang JJ, Arnoult C, Jin L, Zhang ZG, Ray PF, Cao YX, Zhang F. Bi-allelic mutations in TTC21A induce asthenoteratospermia in humans and mice. Am J Hum Genet, 2019, 104(4):738-748.
doi: 10.1016/j.ajhg.2019.02.020 |
[44] |
Tran PV, Haycraft CJ, Besschetnova TY, Turbe-Doan A, Stottmann RW, Herron BJ, Chesebro AL, Qiu HY, Scherz PJ, Shah JV, Yoder BK, Beier DR. THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat Genet, 2008, 40(4):403-410.
doi: 10.1038/ng.105 |
[45] |
Huynh Cong E, Bizet AA, Boyer O, Woerner S, Gribouval O, Filhol E, Arrondel C, Thomas S, Silbermann F, Canaud G, Hachicha J, Ben Dhia N, Peraldi MN, Harzallah K, Iftene D, Daniel L, Willems M, Noel LH, Bole-Feysot C, Nitschké P, Gubler MC, Mollet G, Saunier S, Antignac C. A homozygous missense mutation in the ciliary gene TTC21B causes familial FSGS. J Am Soc Nephrol, 2014, 25(11):2435-2443.
doi: 10.1681/ASN.2013101126 |
[46] |
Davis EE, Zhang Q, Liu Q, Diplas BH, Davey LM, Hartley J, Stoetzel C, Szymanska K, Ramaswami G, Logan CV, Muzny DM, Young AC, Wheeler DA, Cruz P, Morgan M, Lewis LR, Cherukuri P, Maskeri B, Hansen NF, Mullikin JC, Blakesley RW, Bouffard GG; NISC Comparative Sequencing Program, Gyapay G, Rieger S, Tönshoff B, Kern I, Soliman NA, Neuhaus TJ, Swoboda KJ, Kayserili H, Gallagher TE, Lewis RA, Bergmann C, Otto EA, Saunier S, Scambler PJ, Beales PL, Gleeson JG, Maher ER, Attié-Bitach T, Dollfus H, Johnson CA, Green ED, Gibbs RA, Hildebrandt F, Pierce EA, Katsanis N. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet, 2011, 43(3):189-196.
doi: 10.1038/ng.756 |
[1] | 时子文, 何青, 赵卓凡, 刘孝伟, 张鹏, 曹墨菊. 玉米雄性不育资源的发掘与利用[J]. 遗传, 2022, 44(2): 134-152. |
[2] | 孙小媛, 王一帆, 王韫慧, 蔺佳雨, 李金红, 丘远涛, 方小龙, 孔凡江, 李美娜. 大豆细胞核雄性不育基因研究进展[J]. 遗传, 2021, 43(1): 52-65. |
[3] | 陈会友, 张建敏, 李柏森, 邓永琳, 张龚炜. 犏牛雄性不育的减数分裂基因表达与表观遗传调控研究进展[J]. 遗传, 2020, 42(11): 1081-1092. |
[4] | 谢勇尧,汤金涛,杨博文,胡骏,刘耀光,陈乐天. 水稻育性调控的分子遗传研究进展[J]. 遗传, 2019, 41(8): 703-715. |
[5] | 刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊. 高通量转录组测序技术在植物雄性不育研究中的应用[J]. 遗传, 2016, 38(8): 677-687. |
[6] | 刘永明, 张玲, 周建瑜, 曹墨菊. 植物细胞核雄性不育相关bHLH转录因子研究进展[J]. 遗传, 2015, 37(12): 1194-1203. |
[7] | 张艳花,易洪杨,房明,荣廷昭,曹墨菊. 玉米新选细胞质雄性不育系小孢子发育的细胞学观察及DNA甲基化分析[J]. 遗传, 2014, 36(10): 1021-1026. |
[8] | 陈竹锋, 严维, 王娜, 张文辉, 谢刚, 卢嘉威, 简智华, 刘东风, 唐晓艳. 利用改进的MutMap方法克隆水稻雄性不育基因[J]. 遗传, 2014, 36(1): 85-93. |
[9] | 张俊芳 朱化彬 张留光 郝海生 赵学明 秦彤 路永强 王栋. 精子形成期基因转录表达的研究进展[J]. 遗传, 2013, 35(5): 587-594. |
[10] | 张采波,袁国钊,汪静,潘光堂,荣廷昭,曹墨菊. 空间环境诱发玉米细胞质雄性不育突变体的遗传分析[J]. 遗传, 2011, 33(2): 175-181. |
[11] | 王玉锋,黄霁月,杨金水. 基因工程培育可恢复的植物雄性不育系的研究进展[J]. 遗传, 2011, 33(1): 40-47. |
[12] | 陈建南. 分子伴侣参与调控动、植物的发育和进化进程[J]. 遗传, 2010, 32(5): 443-447. |
[13] | 董丽艳,李齐发 屈旭光,李隐侠,李新福,徐洪涛,谢庄. 黄牛、牦牛和犏牛睾丸组织中Cdc2、Cdc25A基因mRNA表达水平[J]. 遗传, 2009, 31(5): 495-499. |
[14] | 刘卫,陈蕊红,张改生,牛娜. 小麦遗传型与生理型雄性不育花药蛋白质双向电泳分析[J]. 遗传, 2008, 30(8): 1063-1068. |
[15] | 段继强,杜光辉,李建永,梁雪妮,刘飞虎. 苎麻atp6和atp9基因的克隆表达及与细胞质雄性不育的相关性[J]. 遗传, 2008, 30(11): 1487-1498. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: