遗传 ›› 2015, Vol. 37 ›› Issue (12): 1194-1203.doi: 10.16288/j.yczz.15-229
刘永明1, 张玲1, 周建瑜2, 曹墨菊1
收稿日期:
2015-05-19
出版日期:
2015-12-20
发布日期:
2015-10-15
通讯作者:
曹墨菊,教授,研究方向:玉米雄性不育。E-mail: caomj@sicau.edu.cn
E-mail:liuluckforever@163.com
作者简介:
刘永明,博士研究生,专业方向:玉米生物技术育种。E-mail: liuluckforever@163.com
基金资助:
Yongming Liu1, Ling Zhang1, Jianyu Zhou2, Moju Cao1
Received:
2015-05-19
Online:
2015-12-20
Published:
2015-10-15
摘要: 雄性不育广泛存在于种子植物中。植物雄性不育不仅是植物生殖发育研究的重要内容,同时也可作为杂种优势利用的有效工具,因而具有重要的理论和应用价值。bHLH转录因子家族是植物中成员最多的转录因子家族,在植株的整个生长发育过程中起着重要的调控作用。本文介绍了拟南芥、水稻、玉米等几种重要模式植物bHLH转录因子调控雄蕊发育的作用机制,并重点阐述其功能异常引起细胞核雄性不育的分子机制,以期为作物育种与理论研究提供参考。
刘永明, 张玲, 周建瑜, 曹墨菊. 植物细胞核雄性不育相关bHLH转录因子研究进展[J]. 遗传, 2015, 37(12): 1194-1203.
Yongming Liu, Ling Zhang, Jianyu Zhou, Moju Cao. Research progress of the bHLH transcription factors involved in genic male sterility in plants[J]. HEREDITAS(Beijing), 2015, 37(12): 1194-1203.
[1] Wu Y, Fox TW, Trimnell MR, Wang L, Xu RJ, Cigan AM, Huffman GA, Garnaat CW, Hershey H, Albertsen MC. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J , 2015: 12477. [2] Hu JG, Rutger JN. Pollen characteristics and genetics of induced and spontaneous genetic male-sterile mutants in rice. Plant Breed , 1992, 109(2): 97-107. [3] 杨莉芳, 刁现民. 植物细胞核雄性不育基因研究进展. 植物遗传资源学报, 2013, 14(6): 1108-1117. [4] Ding JH, Lu Q, Ouyang YD, Mao HL, Zhang PB, Yao JL, Xu CG, Li XH, Xiao JH, Zhang QF. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA , 2012, 109(7): 2654-2659. [5] Zhou H, Zhou M, Yang YZ, Li J, Zhu LY, Jiang DG, Dong JF, Liu QJ, Gu LF, Zhou LY, Feng MJ, Qin P, Hu XC, Song CL, Shi JF, Song XW, Ni ED, Wu XJ, Deng QY, Liu ZL, Chen MS, Liu YG, Cao XF, Zhuang CX. RNase Z S1 processes Ub L40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun , 2014, 5: 4884. [6] Jin JP, Zhang H, Kong L, Gao G, Luo JC. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res , 2014, 42(Database issue): D1182-D1187. [7] Shi H, Wang X, Mo XR, Tang C, Zhong SW, Deng XW. Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination. Proc Natl Acad Sci USA , 2015, 112(12): 3817-3822. [8] Castelain M, Hir RL, Bellini C. The non- DNA -binding bHLH transcription factor PRE3/bHLH135/ATBS1/TMO7 is involved in the regulation of light signaling pathway in Arabidopsis . Physiol Plant , 2012, 145(3): 450-460. [9] Komatsu M, Maekawa M, Shimamoto K, Kyozuka J. The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol , 2001, 231(2): 364-373. [10] Ohno S, Deguchi A, Hosokawa M, Tatsuzawa F, Doi M. A basic helix-loop-helix transcription factor DvIVS determines flower color intensity in cyanic dahlia cultivars. Planta , 2013, 238(2): 331-343. [11] Jiang L, Yan SS, Yang WC, Li YQ, Xia MX, Chen ZJ, Wang Q, Yan LY, Song XF, Liu RY, Zhang XL. Transcriptomic analysis reveals the roles of microtubule-related genes and transcription factors in fruit length regulation in cucumber ( Cucumis sativus L.). Sci Rep , 2015, 5: 8031. [12] Qi TC, Huang H, Wu DW, Yan JB, Qi YJ, Song SS, Xie DX. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell , 2014, 26(3): 1118-1133. [13] Nakata M, Mitsuda N, Herde M, Koo AJK, Moreno JE, Suzuki K, Howe GA, Ohme-Takagi M. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis . Plant Cell , 2013, 25(5): 1641-1656. [14] Fan M, Bai MY, Kim JG, Wang T, Oh E, Chen L, Park CH, Son SH, Kim SK, Mudgett MB, Wang ZY. The bHLH transcription factor HBI1 mediates the trade-off between growth and pathogen-associated molecular pattern-triggered immunity in Arabidopsis . Plant Cell , 2014, 26(2): 828-841. [15] Liu WW, Tai HH, Li SS, Gao W, Zhao M, Xie CX, Li WX. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol , 2014, 201(4): 1192-1204. [16] Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martinez-Garcia JF, Bilbao-Castro JR, Robertson DL. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis , poplar, rice, moss, and algae. Plant Physiol , 2010, 153(3): 1398-1412. [17] Li XX, Duan XP, Jiang HX, Sun YJ, Tang YP, Yuan Z, Guo JK, Liang WQ, Chen L, Yin JY, Ma H, Wang J, Zhang DB. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis . Plant Physiol , 2006, 141(4): 1167-1184. [18] Toledo-Ortiz G, Huq E, Quail PH. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell , 2003, 15(8): 1749-1770. [19] Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol , 2003, 20(5): 735-747. [20] Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Heim MA, Jakoby M, Werber M, Weisshaar B. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana . Plant Cell , 2003, 15(11): 2497- 2502. [21] Song XM, Huang ZN, Duan WK, Ren J, Liu TK, Li Y, Hou XL. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage ( Brassica rapa ssp. pekinensis ). Mol Genet Genomics , 2014, 289(1): 77-91 [22] Hudson KA, Hudson ME. A classification of basic helix-loop-helix transcription factors of soybean. Int J Genomics , 2015, 2015: 603182. [23] Hudson KA, Hudson ME. The basic helix-loop-helix transcription factor family in the sacred lotus, Nelumbo nucifera . Trop Plant Biol , 2014, 7(2): 65-70. [24] Sun H, Fan HJ, Ling HQ. Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genomics , 2015, 16: 9. [25] Wang JY, Hu ZZ, Zhao TM, Yang YW, Chen TZ, Yang ML, Yu WG, Zhang BL. Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato ( Solanum lycopersicum ). BMC Genomics , 2015, 16: 39. [26] Chen ZY, Guo XJ, Chen ZX, Chen WY, Liu DC, Zheng YL, Liu YX, Wei YM, Wang JR. Genome-wide characterization of developmental stage- and tissue-specific transcription factors in wheat. BMC Genomics , 2015, 16: 125. [27] Jiang Y, Zeng B, Zhao HN, Zhang M, Xie SJ, Lai JS. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize. J Integr Plant Biol , 2012, 54(9): 616-630. [28] Zhang X, Luo HM, Xu ZC, Zhu YJ, Ji AJ, Song JY, Chen SL. Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiz a. Sci Rep , 2015, 5: 11244. [29] Kavas M, Baloğlu MC, Atabay ES, Ziplar UT, Daşgan HY, Ünver T. Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration. Mol Genet Genomics , 2015: 1-15. [30] Chen YY, Li MY, Wu XJ, Huang Y, Ma J, Xiong AS. Genome-wide analysis of basic helix-loop-helix family transcription factors and their role in responses to abiotic stress in carrot. Mol Breed , 2015, 35(5), doi:10.1007/s11032-015-0319-0. [31] Ma PCM, Rould MA, Weintraub H, Pabo CO. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell , 1994, 77(3): 451-459. [32] Ko SS, Li MJ, Sun-Ben Ku M, Ho YC, Lin YJ, Chuang MH, Hsing HX, Lien YC, Yang HT, Chang HC, Chan MT. The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. Plant Cell , 2014, 26(6): 2486-2504. [33] Chang AT, Liu YJ, Ayyanathan K, Benner C, Jiang YK, Prokop JW, Paz H, Wang D, Li HR, Fu XD, Rauscher FJ, Yang J. An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors. Genes Dev , 2015, 29(6): 603-616. [34] Forrest S, McNamara C. Id family of transcription factors and vascular lesion formation. Arterioscler Thromb Vasc Biol , 2004, 24(11): 2014-2020. [35] García-Trevijano ER, Torres L, Zaragozá R, Viña JR. The role of Id2 in the regulation of chromatin structure and gene expression. Intech , 2013: 54969. [36] Sharma P, Chinaranagari S, Chaudhary J. Inhibitor of differentiation 4 (ID4) acts as an inhibitor of ID-1, -2 and-3 and promotes basic helix loop helix (bHLH) E47 DNA binding and transcriptional activity. Biochimie , 2015, 112: 139-150. [37] 张虹, 梁婉琪, 张大兵. 花药绒毡层细胞程序性死亡研究进展. 上海交通大学学报(农业科学版), 2008, 26(1): 86-90. [38] Dukowic-Schulze S, Harris A, Li JH, Sundararajan A, Mudge J, Retzel EF, Pawlowski WP, Chen CB. Comparative transcriptomics of early meiosis in Arabidopsis and maize. J Genet Genomics , 2014, 41(3): 139-152. [39] Yang HX, Lu PL, Wang YX, Ma H. The transcriptome landscape of Arabidopsis male meiocytes from high-throughput sequencing: the complexity and evolution of the meiotic process. Plant J , 2011, 65(4): 503-516. [40] Zhang LS, Wang L, Yang YL, Cui J, Chang F, Wang YX, Ma H. Analysis of Arabidopsis floral transcriptome: detection of new florally expressed genes and expansion of Brassicaceae -specific gene families. Front Plant Sci , 2014, 5: 802. [41] Sorensen AM, Krӧber S, Unte US, Huijser P, Dekker K, Saedler H. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J , 2003, 33(2): 413-423. [42] Thorstensen T, Grini PE, Mercy IS, Alm V, Erdal S, Aasland R, Aalen RB. The Arabidopsis SET-domain protein ASHR3 is involved in stamen development and interacts with the bHLH transcription factor ABORTED MICROSPORES (AMS). Plant Mol Biol , 2008, 66(1-2): 47-59. [43] Xu J, Ding ZW, Vizcay-Barrena G, Shi JX, Liang WQ, Yuan Z, Werck-Reichhart D, Schreiber L, Wilson ZA, Zhang DB. ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis . Plant Cell , 2014, 26(4): 1544-1556. [44] Ma X, Feng BM, Ma H. AMS-dependent and independent regulation of anther transcriptome and comparison with those affected by other Arabidopsis anther genes. BMC Plant Biol , 2012, 12: 23. [45] Zhang W, Sun YJ, Timofejeva L, Chen CB, Grossniklaus U, Ma H. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development , 2006, 133(16): 3085-3095. [46] Feng BM, Lu DH, Ma X, Peng YB, Sun YJ, Ning G, Ma H. Regulation of the Arabidopsis anther transcriptome by DYT1 for pollen development. Plant J , 2012, 72(4): 612-624. [47] Gu JN, Zhu J, Yu Y, Teng XD, Lou Y, Xu XF, Liu JL, Yang ZN. DYT1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis . Plant J , 2014, 80(6): 1005-1013. [48] Zhu EG, You CJ, Wang SS, Cui J, Niu BX, Wang YX, Qi J, Ma H, Chang F. The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. Plant J , 2015, 83(6): 976-990. [49] Nakata M, Ohme-Takagi M. Two bHLH-type transcription factors, JA-ASSOCIATED MYC2-LIKE2 and JAM3, are transcriptional repressors and affect male fertility. Plant Signal Behav , 2013, 8(12): e26473. [50] Figueroa P, Browse J. Male sterility in Arabidopsis induced by overexpression of a MYC5-SRDX chimeric repressor. Plant J , 2015, 81(6): 849-860. [51] Xing SP, Quodt V, Chandler J, Hӧhmann S, Berndtgen R, Huijser P. SPL8 acts together with the brassinosteroid-signaling component BIM1 in controlling Arabidopsis thaliana male fertility. Plants , 2013, 2(3): 416-428. [52] Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G. Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell , 2005, 17(10): 2705-2722. [53] Zhang DS, Liang WQ, Yuan Z, Li N, Shi J, Wang J, Liu YM, Yu WJ, Zhang DB. Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant , 2008, 1(4): 599-610. [54] Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB. The rice Tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell , 2006, 18(11): 2999-3014. [55] Niu NN, Liang WQ, Yang XJ, Jin WL, Wilson ZA, Hu JP, Zhang DB. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun , 2013, 4(2): 1445. [56] Ji CH, Li HY, Chen LB, Xie M, Wang FP, Chen YL, Liu YG. A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development. Mol Plant , 2013, 6(5): 1715-1718. [57] Fu ZZ, Yu J, Cheng XW, Zong X, Xu J, Chen MJ, Li ZY, Zhang DB, Liang WQ. The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell , 2014, 26(4): 1512-1524. [58] Crismani W, Kapoor S, Able JA. Comparative transcriptomics reveals 129 transcripts that are temporally regulated during anther development and meiotic progression in both bread wheat ( Triticum aestivum ) and rice ( Oryza sativa ). Int J Plant Genomics , 2011: 931898. [59] Collado-Romero M, Alós E, Prieto P. Unravelling the proteomic profile of rice meiocytes during early meiosis. Front Plant Sci , 2014, 5: 356. [60] Zhang H, Egger RL, Kelliher T, Morrow D, Fernandes J, Nan GL, Walbot V. Transcriptomes and proteomes define gene expression progression in pre-meiotic maize anthers. G3 (Bethesda) , 2014, 4(6): 993-1010. [61] Dukowic-Schulze S, Sundararajan A, Mudge J, Ramaraj T, Farmer AD, Wang MH, Sun Q, Pillardy J, Kianian S, Retzel EF, Pawlowski WP, Chen CB. The transcriptome landscape of early maize meiosis. BMC Plant Biol , 2014, 14: 118. [62] Moon J, Skibbe D, Timofejeva L, Rachel Wang CJ, Kelliher T, Kremling K, Walbot V, Cande WZ. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant J , 2013, 76(4): 592-602. [63] Ren RH, Nagel BA, Kumpatla SP, Zheng PZ, Cutter GL, Greene TW, Thompson SA. Maize cytoplasmic male sterility (cms) c-type restorer rf4 gene, molecular markers and their use: U.S. Patent Application 20120090047. 2013-08-14. [64] Liu TK, Li Y, Zhang CW, Duan WK, Huang FY, Hou XL. Basic helix-loop-helix transcription factor BcbHLHpol functions as a positive regulator of pollen development in non-heading Chinese cabbage. Funct Integr Genomics , 2014, 14(4): 731-739. [65] Jeong HJ, Kang JH, Zhao MA, Kwon JK, Choi HS, Bae JH, Lee HA, Joung YH, Choi D, Kang BC. Tomato Male sterile 10 35 is essential for pollen development and meiosis in anthers. J Exp Bot , 2014, 65(22): 6693-6709. |
[1] | 谢勇尧,汤金涛,杨博文,胡骏,刘耀光,陈乐天. 水稻育性调控的分子遗传研究进展[J]. 遗传, 2019, 41(8): 703-715. |
[2] | 任岚,肖茹丹,张倩,娄晓敏,张昭军,方向东. KLF1和KLF9对K562细胞红系分化的协同调控作用[J]. 遗传, 2018, 40(11): 998-1006. |
[3] | 魏凯,马磊. 高通量测序时代下持家基因定义的发展[J]. 遗传, 2017, 39(2): 127-134. |
[4] | 刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊. 高通量转录组测序技术在植物雄性不育研究中的应用[J]. 遗传, 2016, 38(8): 677-687. |
[5] | 付言峰, 周艳红, 王爱国, 李兰, 刘红林, 李碧侠, 任守文. 梅山猪胚胎附植期EphB2的组织表达及RNA-seq分析[J]. 遗传, 2014, 36(12): 1243-1248. |
[6] | 张艳花,易洪杨,房明,荣廷昭,曹墨菊. 玉米新选细胞质雄性不育系小孢子发育的细胞学观察及DNA甲基化分析[J]. 遗传, 2014, 36(10): 1021-1026. |
[7] | 陈竹锋, 严维, 王娜, 张文辉, 谢刚, 卢嘉威, 简智华, 刘东风, 唐晓艳. 利用改进的MutMap方法克隆水稻雄性不育基因[J]. 遗传, 2014, 36(1): 85-93. |
[8] | 侯志伟 王赟 高宏 侯圣伟. dRNA-seq原理及其在原核生物转录组学研究中的应用[J]. 遗传, 2013, 35(8): 983-991. |
[9] | 张采波,袁国钊,汪静,潘光堂,荣廷昭,曹墨菊. 空间环境诱发玉米细胞质雄性不育突变体的遗传分析[J]. 遗传, 2011, 33(2): 175-181. |
[10] | 王玉锋,黄霁月,杨金水. 基因工程培育可恢复的植物雄性不育系的研究进展[J]. 遗传, 2011, 33(1): 40-47. |
[11] | 陈建南. 分子伴侣参与调控动、植物的发育和进化进程[J]. 遗传, 2010, 32(5): 443-447. |
[12] | 董丽艳,李齐发 屈旭光,李隐侠,李新福,徐洪涛,谢庄. 黄牛、牦牛和犏牛睾丸组织中Cdc2、Cdc25A基因mRNA表达水平[J]. 遗传, 2009, 31(5): 495-499. |
[13] | 刘卫,陈蕊红,张改生,牛娜. 小麦遗传型与生理型雄性不育花药蛋白质双向电泳分析[J]. 遗传, 2008, 30(8): 1063-1068. |
[14] | 段继强,杜光辉,李建永,梁雪妮,刘飞虎. 苎麻atp6和atp9基因的克隆表达及与细胞质雄性不育的相关性[J]. 遗传, 2008, 30(11): 1487-1498. |
[15] | 李玉玲,余永亮,刘艳霞,李学慧,付家锋. 两份太空诱变玉米雄性不育突变体的遗传研究[J]. 遗传, 2007, 29(6): 738-744. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: