[1] Wu Y, Fox TW, Trimnell MR, Wang L, Xu RJ, Cigan AM, Huffman GA, Garnaat CW, Hershey H, Albertsen MC. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J , 2015: 12477. [2] Hu JG, Rutger JN. Pollen characteristics and genetics of induced and spontaneous genetic male-sterile mutants in rice. Plant Breed , 1992, 109(2): 97-107. [3] 杨莉芳, 刁现民. 植物细胞核雄性不育基因研究进展. 植物遗传资源学报, 2013, 14(6): 1108-1117. [4] Ding JH, Lu Q, Ouyang YD, Mao HL, Zhang PB, Yao JL, Xu CG, Li XH, Xiao JH, Zhang QF. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA , 2012, 109(7): 2654-2659. [5] Zhou H, Zhou M, Yang YZ, Li J, Zhu LY, Jiang DG, Dong JF, Liu QJ, Gu LF, Zhou LY, Feng MJ, Qin P, Hu XC, Song CL, Shi JF, Song XW, Ni ED, Wu XJ, Deng QY, Liu ZL, Chen MS, Liu YG, Cao XF, Zhuang CX. RNase Z S1 processes Ub L40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun , 2014, 5: 4884. [6] Jin JP, Zhang H, Kong L, Gao G, Luo JC. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res , 2014, 42(Database issue): D1182-D1187. [7] Shi H, Wang X, Mo XR, Tang C, Zhong SW, Deng XW. Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination. Proc Natl Acad Sci USA , 2015, 112(12): 3817-3822. [8] Castelain M, Hir RL, Bellini C. The non- DNA -binding bHLH transcription factor PRE3/bHLH135/ATBS1/TMO7 is involved in the regulation of light signaling pathway in Arabidopsis . Physiol Plant , 2012, 145(3): 450-460. [9] Komatsu M, Maekawa M, Shimamoto K, Kyozuka J. The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol , 2001, 231(2): 364-373. [10] Ohno S, Deguchi A, Hosokawa M, Tatsuzawa F, Doi M. A basic helix-loop-helix transcription factor DvIVS determines flower color intensity in cyanic dahlia cultivars. Planta , 2013, 238(2): 331-343. [11] Jiang L, Yan SS, Yang WC, Li YQ, Xia MX, Chen ZJ, Wang Q, Yan LY, Song XF, Liu RY, Zhang XL. Transcriptomic analysis reveals the roles of microtubule-related genes and transcription factors in fruit length regulation in cucumber ( Cucumis sativus L.). Sci Rep , 2015, 5: 8031. [12] Qi TC, Huang H, Wu DW, Yan JB, Qi YJ, Song SS, Xie DX. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell , 2014, 26(3): 1118-1133. [13] Nakata M, Mitsuda N, Herde M, Koo AJK, Moreno JE, Suzuki K, Howe GA, Ohme-Takagi M. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis . Plant Cell , 2013, 25(5): 1641-1656. [14] Fan M, Bai MY, Kim JG, Wang T, Oh E, Chen L, Park CH, Son SH, Kim SK, Mudgett MB, Wang ZY. The bHLH transcription factor HBI1 mediates the trade-off between growth and pathogen-associated molecular pattern-triggered immunity in Arabidopsis . Plant Cell , 2014, 26(2): 828-841. [15] Liu WW, Tai HH, Li SS, Gao W, Zhao M, Xie CX, Li WX. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol , 2014, 201(4): 1192-1204. [16] Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martinez-Garcia JF, Bilbao-Castro JR, Robertson DL. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis , poplar, rice, moss, and algae. Plant Physiol , 2010, 153(3): 1398-1412. [17] Li XX, Duan XP, Jiang HX, Sun YJ, Tang YP, Yuan Z, Guo JK, Liang WQ, Chen L, Yin JY, Ma H, Wang J, Zhang DB. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis . Pl |