[1] Li SQ, Yang DC, Zhu YG. Characterization and use of male sterility in hybrid rice breeding. J Integr Plant Biol, 2007, 49(6): 791–804. <\p>
[2] Budar F, Pelletier G. Male sterility in plants: occurrence, determinism, significance and use. C R Acad Sci III, 2001, 324(6): 543–550. <\p>
[3] Kaul MLH. Male sterility in higher plants. Berlin: Springer Verlag, 1988: 211–256. <\p>
[4] Araya A, Zabaleta E, Blanc V, Begu D, Hemould M, Mouras A, Litvak S. RNA editing in plant mitochondria, cytoplasmic male sterility and plant breeding. Electron J Biotechn, 1998, 1(1): 31–39. <\p>
[5] Luo DP, Xu H, Liu ZL, Guo JX, Li HY, Chen LT, Fang C, Zhang QY, Bai M, Yao N, Wu H, Wu H, Ji CH, Zheng HQ, Chen YL, Ye S, Li XY, Zhao XC, Li RQ, Liu YG. A de-trimental mitochondrial nuclear interaction causes cytop-lasmic male sterility in rice. Nat Genet, 2013, 45(5): 573–577. <\p>
[6] Xing YZ, Zhang QF. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010, 61(1): 421–442. <\p>
[7] 郭龙彪, 储成才, 钱前. 水稻突变体与功能基因组学. 植物学通报, 2006, 23(1): 1–13. <\p>
[8] Krishnan A, Guiderdoni E, An G, Hsing YI, Han CD, Lee MC, Yu SM, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A. Mutant resources in rice for functional genomics of the grasses. Plant Physiol, 2009, 149(1): 165–170. <\p>
[9] Wang NL, Long T, Yao W, Xiong LZ, Zhang QF, Wu CY. Mutant resources for the functional analysis of the rice genome. Mol Plant, 2013, 6(3): 596–604. <\p>
[10] Yang Y, Li Y, Wu CY. Genomic resources for functional analyses of the rice genome. Curr Opin Plant Biol, 2013, 16(2): 157–163. <\p>
[11] Jiang SY, Ramachandran S. Natural and artificial mutants as valuable resources for functional genomics and molecular breeding. Int J Biol Sci, 2010, 6(3): 228–251. <\p>
[12] Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mistsuoka C, Muluneh T, Innan H, Cano L, Kamoun S, Teraushi R. Genome se-quencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012, 30(2): 174–178. <\p>
[13] Chen HD, Xie WB, He H, Yu HH, Chen W, Li J, Yu RB, Yao Y, Zhang WH, He YQ, Tang XY, Zhou FS, Deng XW, Zhang QF. A high-density SNP genotyping array for rice biology and molecular breeding. Mol Plant, 2013, Epub ahead of print. <\p>
[14] Li RQ, Yu C, Li YR, Lam TW, Yiu SM, Kristiansen K, Wang J. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 2009, 25(15): 1966–1967. <\p>
[15] Li RQ, Li YR, Fang XD, Yan HM, Wang J, Wang J. SNP detection for massively parallel whole-genome resequenc¬ing. Genome Res, 2009, 19(6): 1124–1132. <\p>
[16] Liew M, Seipp M , Durtschi J, Margraf RL, Dames S, Erali M, Voelkerding K, Wittwer C. Closed-tube SNP genotyping without labeled probes-a comparison between unlabeled probe and amplicon melting. Am J Clin Pathol, 2007, 127(3): 341–348. <\p>
[17] Zhou L, Wang L, Palais R, Pryor R, Wittwer CT. High- resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clin Chem, 2005, 51(10): 1770–1777. <\p>
[18] Wang KJ, Tang D, Wang M, Lu JF, Yu HX, Liu JF, Qian BX, Gong ZY, Wang X, Chen JM, Gu MH, Cheng ZK. MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. J Cell Sci, 2009, 122(12): 2055–2063. <\p>
[19] Glover J, Grelon M, Craig S, Chaudhury A, Dennis E. Cloning and characterization of MS5 from Arabidopsis, a gene critical in male meiosis. Plant J, 1988, 15(3): 345– 356. <\p>
[20] 谭何新, 文铁桥, 张大兵. 水稻花粉发育的分子机理. 植物学通报, 2007, 24(3): 330–339. <\p>
[21] Guo JX, Liu YG. Molecular control of male reproductive devlopment and pollen fertility in rice. J Integr Plant Biol, 2012, 54(12): 967–978. <\p>
[22] Yoshida H, Nagato Y. Flower development in rice. J Exp Bot, 2011, 62(14): 4719–4730. <\p>
[23] Zhang DB, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics, 2011, 38(9): 379–390. <\p>
[24] Zhang H, Liang WQ, Yang XJ, Luo X, Jiang N, Ma H, Zhang DB. Carbon Starved Anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell, 2010, 22(3): 672–689. <\p>
[25] Qin P, Tu B, Wang YP, Deng LC, Quilichini TD, Li T, Wang H, Ma BT, Li SG. ABCG15 encodes an ABC transporter protein, and is essential for post meiotic anther and pollen exine development in rice. Plant Cell Physiol, 2013, 54(1): 138–154. <\p>
[26] Niu NN, Liang WQ, Yang XJ, Jin WL, Wilson Z A, Hu JP, Zhang DB. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun, 2013, 4: 1445. <\p>
[27] Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mit-suoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013, 74(1): 174–183. <\p>
[28] 汪旭东, 周开达, 李仕贵, 黎汉云, 高克铭. 利用隐性核不育性进行水稻轮回育种初步研究. 西南农业学报, 2001, 14(3): 102–106. <\p>
[29] 邓兴旺, 王海洋, 唐晓艳, 周君莉, 陈浩东, 何光明, 陈良碧, 许智宏. 杂交水稻育种将迎来新时代. 中国科学(生命科学), 2013, 43(10): 864–868.<\p> |