遗传 ›› 2020, Vol. 42 ›› Issue (1): 45-56.doi: 10.16288/j.yczz.19-266
收稿日期:
2019-09-04
修回日期:
2019-11-04
出版日期:
2020-01-20
发布日期:
2019-12-05
通讯作者:
张治华
E-mail:zhangzhihua@big.ac.cn
作者简介:
高晓萌,硕士研究生,专业方向:三维基因组结构研究。E-mail: gaoxiaomeng2018m@big.ac.cn
基金资助:
Xiaomeng Gao1,2, Zhihua Zhang1,2()
Received:
2019-09-04
Revised:
2019-11-04
Online:
2020-01-20
Published:
2019-12-05
Contact:
Zhang Zhihua
E-mail:zhangzhihua@big.ac.cn
Supported by:
摘要:
生物大分子的相分离聚集(简称相分离)是驱动细胞内无膜细胞器形成的主要机制,参与众多生物学过程并和多种人类疾病密切相关,如神经退行性疾病等。近年来,研究人员围绕相分离现象的分子机制和生物学功能,发现了相分离与信号传导、染色质结构、基因表达、转录调控等一系列生物学过程存在紧密关联,为理解细胞命运决定和疾病发生提供了新的视角,为疾病治疗和新药研发开辟了新的可能途径。本文在回顾了相分离研究的发展过程、相分离现象在生物学中的应用,以及相分离与疾病的关系的基础上,重点分析了近年来相分离与染色质结构关联方面的研究突破,包括相分离如何感知并重塑染色质结构、超级增强子如何通过相分离调节基因表达、共转录激活因子如何通过相分离参与基因表达调控等,以期为进一步理解相分离与染色质空间结构的关系提供参考。
高晓萌, 张治华. 生物大分子“液-液相分离”调控染色质三维空间结构和功能[J]. 遗传, 2020, 42(1): 45-56.
Xiaomeng Gao, Zhihua Zhang. Three-dimensional structure and function of chromatin regulated by “liquid-liquid phase separation” of biological macromolecules.[J]. Hereditas(Beijing), 2020, 42(1): 45-56.
[1] |
Mitrea DM, Kriwacki RM . Phase separation in biology; functional organization of a higher order. Cell Commun Signal, 2016,14:1.
doi: 10.1186/s12964-015-0125-7 pmid: 26727894 |
[2] |
Uversky VN . Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder . Curr Opin Struct Biol, 2017,44:18-30.
doi: 10.1016/j.sbi.2016.10.015 pmid: 27838525 |
[3] |
Banani SF, Lee OH, Hyman AA, Rosen MK . Biomolecular condensates: organizers of cellular biochemistry . Nat Rev Mol Cell Biol, 2017,18(5):285-298.
doi: 10.1038/nrm.2017.7 pmid: 28225081 |
[4] |
Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA . Germline P granules are liquid droplets that localize by controlled dissolution/condensation . Science, 2009,324(5935):1729-1732.
doi: 10.1126/science.1172046 pmid: 19460965 |
[5] |
Brangwynne CP, Mitchison TJ, Hyman AA . Active liquid-like behavior of nucleoli determines their size and shape in xenopus laevis oocytes . Proc Natl Acad Sci USA, 2011,108(11):4334-4339.
doi: 10.1073/pnas.1017150108 pmid: 21368180 |
[6] |
Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin MV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels . Cell, 2012,149(4):753-767.
doi: 10.1016/j.cell.2012.04.017 |
[7] |
Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ . Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles . Mol Cell, 2015,57(5):936-947.
doi: 10.1016/j.molcel.2015.01.013 pmid: 25747659 |
[8] |
Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK . Phase transitions in the assembly of multivalent signalling proteins . Nature, 2012,483(7389):336-340.
doi: 10.1038/nature10879 |
[9] |
Deichmann U . Chromatin: its history, current research, and the seminal researchers and their philosophy . Perspect Biol Med, 2015,58(2):143-164.
doi: 10.1353/pbm.2015.0024 pmid: 26750599 |
[10] |
Wu RB, Li PL . Liquid-liquid separation and biomolecular condensation. Chin Sci Bull, 2019,64(22):2285-2291.
doi: 10.1360/N972019-00281 |
吴荣波, 李丕龙 . 液-液相分离与生物分子凝集体. 科学通报, 2019,64(22):2285-2291.
doi: 10.1360/N972019-00281 |
|
[11] |
Ramaswami M, Taylor JP, Parker R . Altered ribostasis: RNA-protein granules in degenerative disorders . Cell, 2013,154(4):727-736.
doi: 10.1016/j.cell.2013.07.038 |
[12] |
King OD, Gitler AD, Shorter J . The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease . Brain Res, 2012,1462:61-80.
doi: 10.1016/j.brainres.2012.01.016 |
[13] |
Alberti S, Halfmann R, King O, Kapila A, Lindquist S . A systematic survey identifies prions and illuminates sequence features of prionogenic proteins . Cell, 2009,137(1):146-158.
doi: 10.1016/j.cell.2009.02.044 pmid: 19345193 |
[14] |
Fromm SA, Kamenz J, Nöldeke ER, Neu A, Zocher G, Sprangers R . In vitro reconstitution of a cellular phase- transition process that involves the mRNA decapping machinery . Angew Chem Int Ed Engl, 2014,53(28):7354-7359.
doi: 10.1002/anie.201402885 pmid: 24862735 |
[15] |
Zeng M, Shang Y, Araki Y, Guo T, Huganir RL, Zhang M. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell, 2016, 166(5): 1163-1175.e12.
doi: 10.1016/j.cell.2016.07.008 pmid: 27565345 |
[16] |
Shin Y, Chang YC, Lee DSW, Berry J, Sanders DW, Ronceray P, Wingreen NS, Haataja M, Brangwynne CP. Liquid nuclear condensates mechanically sense and sestructure the genome. Cell, 2018, 175(6): 1481-1491.e13.
doi: 10.1016/j.cell.2018.10.057 pmid: 30500535 |
[17] |
Huang WYC, Alvarez S, Kondo Y, Lee YK, Chung JK, Lam HYM, Biswas KH, Kuriyan J, Groves JT . A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS . Science, 2019,363(6431):1098-1103.
doi: 10.1126/science.aau5721 pmid: 30846600 |
[18] |
Houtman JC, Yamaguchi H, Barda-Saad M, Braiman A, Bowden B, Appella E, Schuck P, Samelson LE . Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1 . Nat Struct Mol Biol, 2006,13(9):798-805.
doi: 10.1038/nsmb1133 pmid: 16906159 |
[19] |
Bandaru P, Kondo Y, Kuriyan J . The interdependent activation of Son-of-Sevenless and Ras . Cold Spring Harb Perspect Med, 2019,9(2):a031534.
doi: 10.1101/cshperspect.a031534 pmid: 29610148 |
[20] |
Nag A, Monine MI, Faeder JR, Goldstein B . Aggregation of membrane proteins by cytosolic cross-linkers: theory and simulation of the LAT-Grb2-SOS1 system . Biophys J, 2009,96(7):2604-2623.
doi: 10.1016/j.bpj.2009.01.019 pmid: 19348745 |
[21] |
Huang WYC, Ditlev JA, Chiang HK, Rosen MK, Groves JT . Allosteric modulation of Grb2 recruitment to the intrinsically disordered scaffold protein, LAT, by Remote Site Phosphorylation . . Am Chem Soc, 2017,139(49):18009-18015.
doi: 10.1021/jacs.7b09387 pmid: 29182244 |
[22] |
Huang WYC, Chiang HK, Groves JT . Dynamic scaling analysis of molecular motion within the LAT:Grb2:SOS protein network on membranes . Biophys J, 2017,113(8):1807-1813.
doi: 10.1016/j.bpj.2017.08.024 pmid: 29045874 |
[23] |
Riback JA, Katanski CD, Kear-Scott JL, Pilipenko EV, Rojek AE, Sosnick TR, Drummond DA. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell, 2017, 168(6): 1028-1040.e19.
doi: 10.1016/j.cell.2017.02.027 pmid: 28283059 |
[24] |
Franzmann TM, Jahnel M, Pozniakovsky A, Mahamid J, Holehouse AS, Nüske E, Richter D, Baumeister W, Grill SW, Pappu RV, Hyman AA, Alberti S,. Phase separation of a yeast prion protein promotes cellular fitness. Science, 2018, 359(6371): eaa05654.
doi: 10.1126/science.359.6371.126 pmid: 29302016 |
[25] |
Li YR, King OD, Shorter J, Gitler AD . Stress granules as crucibles of ALS pathogenesis. . Cell Biol, 2013,201(3):361-372.
doi: 10.1083/jcb.201302044 pmid: 23629963 |
[26] |
Brundin P, Melki R, Kopito R . Prion-like transmission of protein aggregates in neurodegenerative diseases . Nat Rev Mol Cell Biol, 2010,11(4):301-307.
doi: 10.1038/nrm2873 pmid: 20308987 |
[27] |
Shulman JM, De Jager P, Feany MB . Parkinson's disease: genetics and pathogenesis . Annu Rev Pathol, 2011,6(1):193-222.
doi: 10.1146/annurev-pathol-011110-130242 |
[28] |
Robberecht W, Philips T . The changing scene of amyotrophic lateral sclerosis . Nat Rev Neurosci, 2013,14(4):248-264.
doi: 10.1038/nrn3430 |
[29] |
Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, Pozniakovski A, Poser I, Maghelli N, Royer LA, Weigert M, Myers EW, Grill S, Drechsel D, Hyman AA, Alberti S . A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation . Cell, 2015,162(5):1066-1077.
doi: 10.1016/j.cell.2015.07.047 pmid: 26317470 |
[30] |
Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP,. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS . Nature, 2013,495(7442):467-473.
doi: 10.1038/nature11922 |
[31] |
Murakami T, Qamar S, Lin JQ, Schierle GS, Rees E, Miyashita A, Costa AR, Dodd RB, Chan FT, Michel CH, Kronenberg-Versteeg D, Li Y, Yang SP, Wakutani Y, Meadows W, Ferry RR, Dong L, Tartaglia GG, Favrin G, Lin WL, Dickson DW, Zhen M, Ron D, Schmitt-Ulms G, Fraser PE, Shneider NA, Holt C, Vendruscolo M, Kaminski CF, St George-Hyslop P. ALS/FTD mutation- induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function . Neuron, 2015,88(4):678-690.
doi: 10.1016/j.neuron.2015.10.030 pmid: 26526393 |
[32] |
Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D . The 3D profile method for identifying fibril-forming segments of proteins . Proc Natl Acad Sci USA, 2006,103(11):4074-4078.
doi: 10.1073/pnas.0511295103 pmid: 16537487 |
[33] |
Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, Chen M, Xie Y, Allen J, Xiao J, McKnight SL. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies . Cell, 2012,149(4):768-779.
doi: 10.1016/j.cell.2012.04.016 |
[34] |
Schwartz JC, Wang X, Podell ER, Cech TR . RNA seeds higher-order assembly of FUS protein . Cell Rep, 2013,5(4):918-925.
doi: 10.1016/j.celrep.2013.11.017 pmid: 24268778 |
[35] |
Schwartz JC, Cech TR, Parker RR . Biochemical properties and biological functions of FET proteins . Annu Rev Biochem, 2015,84:355-379.
doi: 10.1146/annurev-biochem-060614-034325 pmid: 25494299 |
[36] |
Cleary JD, Ranum LP . Repeat-associated non-ATG (RAN) translation in neurological disease . Hum Mol Genet, 2013,22(R1):R45-51.
doi: 10.1093/hmg/ddt371 pmid: 23918658 |
[37] |
Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, Schmid B, Kretzschmar HA, Cruts M, Van Broeckhoven C, Haass C, Edbauer D . The C9orf72 GGGGCC repeat is translated into aggregating dipeptide- repeat proteins in FTLD/ALS . Science, 2013,339(6125):1335-1338.
doi: 10.1126/science.1232927 |
[38] |
Lin MT, Beal MF . Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases . Nature, 2006,443(7113):787-795.
doi: 10.1038/nature05292 pmid: 17051205 |
[39] |
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N . The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data . Cancer Discov, 2012,2(5):401-404.
doi: 10.1158/2159-8290.CD-12-0095 |
[40] |
Klokk TI, Kurys P, Elbi C, Nagaich AK, Hendarwanto A, Slagsvold T, Chang CY, Hager GL, Saatcioglu F . Ligand-specific dynamics of the androgen receptor at its response element in living cells . Mol Cell Biol, 2007,27(5):1823-1843.
doi: 10.1128/MCB.01297-06 pmid: 17189428 |
[41] | Bouchard JJ, Otero JH, Scott DC, Szulc E, Martin EW, Sabri N, Granata D, Marzahn MR, Lindorff-Larsen K, Salvatella X, Schulman BA, Mittag T. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol Cell, 2018, 72(1): 19- 36. e8. |
[42] |
Wojciechowska M, Krzyzosiak WJ . Cellular toxicity of expanded RNA repeats: focus on RNA foci . Hum Mol Genet, 2011,20(19):3811-3821.
doi: 10.1093/hmg/ddr299 |
[43] |
Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP , Coexisting liquid phases underlie nucleolar subcompartments . Cell, 2016,165(7):1686-1697.
doi: 10.1016/j.cell.2016.04.047 pmid: 27212236 |
[44] |
Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE . Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state . Nat Biotechnol, 2015,33(11):1165-1172.
doi: 10.1038/nbt.3383 pmid: 26458175 |
[45] |
Shankaranarayanan P, Mendoza-Parra MA, Walia M, Wang L, Li N, Trindade LM, Gronemeyer H . Single-tube linear DNA amplification (LinDA) for robust ChIP-seq . Nat Methods, 2011,8(7):565-567.
doi: 10.1038/nmeth.1626 pmid: 21642965 |
[46] |
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J . Comprehensive mapping of long- range interactions reveals folding principles of the human genome . Science, 2009,326(5950):289-293.
doi: 10.1126/science.1181369 pmid: 19815776 |
[47] |
Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL . A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping . Cell, 2014,159(7):1665-1680.
doi: 10.1016/j.cell.2014.11.021 |
[48] |
Buenrostro JD, Wu BJ, Chang HY, Greenleaf WJ,. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol, 2015, 109: 21.29.1- 21.29. 9.
doi: 10.1186/s12864-018-4559-3 pmid: 29490630 |
[49] |
Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ . Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position . Nat Methods, 2013,10(12):1213-1218.
doi: 10.1038/NMETH.2688 |
[50] |
Gibson BA, Doolittle LK, Schneider MWG, Jensen LE, Gamarra N, Henry L, Gerlich DW, Redding S, Rosen MK. Organization of chromatin by intrinsic and regulated phase separation. Cell, 2019, 179(2): 470-484.e21.
doi: 10.1016/j.cell.2019.08.037 pmid: 31543265 |
[51] |
Xu BX, Zhang ZH . Computational inference of physical spatial organization of eukaryotic genomes . Quant Biol, 2016,4(4):302-309.
doi: 10.1007/s40484-016-0082-1 |
[52] |
Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH . Phase separation drives heterochromatin domain formation . Nature, 2017,547(7662):241-245.
doi: 10.1038/nature22989 pmid: 28636597 |
[53] |
Mao YS, Zhang B, Spector DL . Biogenesis and function of nuclear bodies . Trends Genet, 2011,27(8):295-306.
doi: 10.1016/j.tig.2011.05.006 |
[54] |
Erdel F, Rippe K . Formation of chromatin subcompartments by phase separation . Biophys J, 2018,114(10):2262-2270.
doi: 10.1016/j.bpj.2018.03.011 pmid: 29628210 |
[55] |
Ruthenburg AJ, Li H, Patel DJ, Allis CD . Multivalent engagement of chromatin modifications by linked binding modules . Nat Rev Mol Cell Biol, 2007,8(12):983-994.
doi: 10.1038/nrm2298 pmid: 18037899 |
[56] |
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA . Master transcription factors and mediator establish super-enhancers at key cell identity genes . Cell, 2013,153(2):307-319.
doi: 10.1016/j.cell.2013.03.035 |
[57] |
Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA . A phase separation model for transcriptional control . Cell, 2017,169(1):13-23.
doi: 10.1016/j.cell.2017.02.007 pmid: 28340338 |
[58] |
Sabari BR, Dall'Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC, Li CH, Guo YE, Day DS, Schuijers J, Vasile E, Malik S, Hnisz D, Lee TI, Cisse II, Roeder RG, Sharp PA, Chakraborty AK, Young PA. Coactivator condensation at super-enhancers links phase separation and gene control. Science, 2018, 361(6400): eaar3958.
doi: 10.1126/science.361.6409.1410 pmid: 30262504 |
[59] |
Brent R, Ptashne M . A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor . Cell, 1985,43(3 Pt 2):729-736.
doi: 10.1016/0092-8674(85)90246-6 pmid: 3907859 |
[60] |
Fulton DL, Sundararajan S, Badis G, Hughes TR, Wasserman WW, Roach JC, Sladek R . TFCat: the curated catalog of mouse and human transcription factors . Genome Biol, 2009,10(3):R29.
doi: 10.1186/gb-2009-10-3-r29 pmid: 19284633 |
[61] |
Boija A, Klein IA, Sabari BR, Dall'Agnese A, Coffey EL, Zamudio AV, Li CH, Shrinivas K, Manteiga JC, Hannett NM, Abraham BJ, Afeyan LK, Guo YE, Rimel JK, Fant CB, Schuijers J, Lee TL, Taatjes DJ, Young RA. Transcription factors activate genes through the phase- separation capacity of their activation domains. Cell, 2018,175(7): 1842-1855.e16.
doi: 10.1016/j.cell.2018.10.042 pmid: 30449618 |
[62] |
Apostolou E, Ferrari F, Walsh RM, Bar-Nur O, Stadtfeld M, Cheloufi S, Stuart HT, Polo JM, Ohsumi TK, Borowsky ML, Kharchenko PV, Park PJ, Hochedlinger K . Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming . Cell Stem Cell, 2013,12(6):699-712.
doi: 10.1016/j.stem.2013.04.013 |
[63] |
Cramer P . Organization and regulation of gene transcription . Nature, 2019,573(7772):45-54.
doi: 10.1038/s41586-019-1517-4 pmid: 31462772 |
[64] |
Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall'Agnese A, Hannett NM, Spille JH, Afeyan LK, Zamudio AV, Shrinivas K, Abraham BJ, Boija A, Decker TM, Rimel JK, Fant CB, Lee TI, Cisse II, Sharp PA, Taatjes DJ, Young RA. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates . Nature, 2019,572(7770):543-548.
doi: 10.1038/s41586-019-1464-0 pmid: 31391587 |
[1] | 田璐妍, 黄小珍. 植物开花调控中蛋白质相分离机制在从头驯化中的应用价值[J]. 遗传, 2023, 45(9): 754-764. |
[2] | 宋睿嘉, 韩露, 孙海峰, 沈彬. 线粒体DNA碱基编辑技术研究进展[J]. 遗传, 2023, 45(8): 632-642. |
[3] | 何山, 赵健, 宋晓峰. N6-甲基腺苷修饰对女性生殖系统功能的影响[J]. 遗传, 2023, 45(6): 472-487. |
[4] | 王舜泽, 江丰, 朱东丽, 杨铁林, 郭燕. Hi-C技术在三维基因组学和疾病致病机理研究中的应用[J]. 遗传, 2023, 45(4): 279-294. |
[5] | 韩熙, 罗富成. 单细胞转录组测序在少突胶质谱系细胞异质性与神经系统疾病中的应用[J]. 遗传, 2023, 45(3): 198-211. |
[6] | 王承贤, 容益康, 崔敏. 果蝇限制端粒转座子的分子机制[J]. 遗传, 2023, 45(3): 221-228. |
[7] | 田智琛, 尹晓娟. 诱导多能干细胞在儿童疾病的应用研究进展[J]. 遗传, 2023, 45(1): 42-51. |
[8] | 高菲, 王煜, 杜嘉祥, 杜旭光, 赵建国, 潘登科, 吴森, 赵要风. 遗传修饰猪模型在生物医学及农业领域研究进展及应用[J]. 遗传, 2023, 45(1): 6-28. |
[9] | 吴丹丹, 朱明昆, 方忠艳, 马伟. 植物B染色体的分子结构组成及遗传机制研究进展[J]. 遗传, 2022, 44(9): 772-782. |
[10] | 徐思远, 寿佳, 吴强. HS5-1增强子eRNA PEARL对原钙粘蛋白α基因簇的表达调控[J]. 遗传, 2022, 44(8): 695-764. |
[11] | 赵岩, 王晨鑫, 杨天明, 李春爽, 张丽宏, 杜冬妮, 王若曦, 王静, 魏民, 巴雪青. DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J]. 遗传, 2022, 44(6): 466-477. |
[12] | 王娟, 杨悦宁, 朴威兰, 金花. 尿苷酸化:一种重要的细胞内RNA监控方式[J]. 遗传, 2022, 44(6): 449-465. |
[13] | 张元, 赵语婷, 庄乐南, 贺津. 转录中介体复合物在心血管发育和疾病中的转录调控作用[J]. 遗传, 2022, 44(5): 383-397. |
[14] | 刘聪, 冯佳妮, 李玮玮, 朱伟伟, 薛云新, 王岱, 赵西林. 细胞dNTP库的稳态维持与基因组稳定性[J]. 遗传, 2022, 44(2): 96-106. |
[15] | 朱前彬, 甘志承, 李晓翠, 张英杰, 赵合明, 黄先忠. 小鼠耳芥MAPKKK基因家族全基因组鉴定及进化与表达[J]. 遗传, 2022, 44(11): 1044-1055. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: