遗传 ›› 2022, Vol. 44 ›› Issue (5): 370-382.doi: 10.16288/j.yczz.22-072
收稿日期:
2022-03-16
修回日期:
2022-04-05
出版日期:
2022-05-20
发布日期:
2022-04-21
作者简介:
赵欢,博士,研究方向:遗传谱系示踪技术。E-mail: 基金资助:
Received:
2022-03-16
Revised:
2022-04-05
Online:
2022-05-20
Published:
2022-04-21
Supported by:
摘要:
胰岛beta细胞分泌胰岛素调控体内血糖水平,胰岛beta细胞数量减少会导致糖尿病的发生。胰岛移植是目前治疗糖尿病的有效方法,但是目前仍然面临供体短缺等巨大障碍,因此研究胰岛beta细胞再生对于糖尿病的临床治疗具有深远意义。beta细胞的再生来源主要包括内源性beta细胞增殖、多能干细胞分化和其他非beta细胞的转分化。成体是否存在内源性胰腺干细胞依然是领域内亟待解决的重要科学问题之一。本文总结了与胰岛beta细胞再生相关的研究发现与进展,并讨论了内源性胰岛beta细胞增殖、诱导多能干细胞分化、非胰岛beta细胞重编程等方法在糖尿病治疗中需要注意的问题和潜在应用前景。
赵欢, 周斌. 胰岛beta细胞再生研究进展[J]. 遗传, 2022, 44(5): 370-382.
Huan Zhao, Bin Zhou. Pancreatic beta cells regeneration[J]. Hereditas(Beijing), 2022, 44(5): 370-382.
[1] |
Zhou Q, Melton DA. Pancreas regeneration. Nature, 2018, 557(7705):351-358.
doi: 10.1038/s41586-018-0088-0 |
[2] |
McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med, 2010, 363(24):2339-2350.
doi: 10.1056/NEJMra0906948 |
[3] | Jopling C, Boue S, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol, 2011, 12(2):79-89. |
[4] |
Messier B, Leblond CP. Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. Am J Anat, 1960, 106:247-285.
doi: 10.1002/aja.1001060305 |
[5] |
Tsubouchi S, Kano E, Suzuki H. Demonstration of expanding cell populations in mouse pancreatic acini and islets. Anat Rec, 1987, 218(2):111-115.
pmid: 3304019 |
[6] |
Bonner-Weir S, Sharma A. Pancreatic stem cells. J Pathol, 2002, 197(4):519-526.
pmid: 12115867 |
[7] |
Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest, 2003, 111(6):843-850.
doi: 10.1172/JCI200316502 |
[8] |
Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Müller B, Vallejo M, Thomas MK, Habener JF. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes, 2001, 50(3):521-533.
pmid: 11246871 |
[9] | Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes, 1993, 42(12):1715-1720. |
[10] |
Lipsett M, Finegood DT. Beta-cell neogenesis during prolonged hyperglycemia in rats. Diabetes, 2002, 51(6):1834-1841.
pmid: 12031971 |
[11] |
Guz Y, Nasir I, Teitelman G. Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology, 2001, 142(11):4956-4968.
pmid: 11606464 |
[12] |
Kretzschmar K, Watt FM. Lineage tracing. Cell, 2012, 148(1-2):33-45.
doi: 10.1016/j.cell.2012.01.002 pmid: 22265400 |
[13] |
Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature, 2004, 429(6987):41-46.
doi: 10.1038/nature02520 |
[14] |
Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell, 2007, 12(5):817-826.
doi: 10.1016/j.devcel.2007.04.011 |
[15] |
Solar M, Cardalda C, Houbracken I, Martín M, Maestro MA, De Medts N, Xu XB, Grau V, Heimberg H, Bouwens L, Ferrer J. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell, 2009, 17(6):849-860.
doi: 10.1016/j.devcel.2009.11.003 |
[16] |
Kopinke D, Brailsford M, Shea JE, Leavitt R, Scaife CL, Murtaugh LC. Lineage tracing reveals the dynamic contribution of Hes1+ cells to the developing and adult pancreas. Development, 2011, 138(3):431-441.
doi: 10.1242/dev.053843 pmid: 21205788 |
[17] |
Kopinke D, Murtaugh LC. Exocrine-to-endocrine differentiation is detectable only prior to birth in the uninjured mouse pancreas. Bmc Dev Biol, 2010, 10:38.
doi: 10.1186/1471-213X-10-38 pmid: 20377894 |
[18] |
Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP, Seymour PA, Ma J, Sander M. Sox9 + ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development, 2011, 138(4):653-665.
doi: 10.1242/dev.056499 |
[19] |
Xiao XW, Chen ZA, Shiota C, Prasadan K, Guo P, El-Gohary Y, Paredes J, Welsh C, Wiersch J, Gittes GK. No evidence for β cell neogenesis in murine adult pancreas. J Clin Invest, 2013, 123(5):2207-2217.
doi: 10.1172/JCI66323 |
[20] |
Zhao H, Huang XZ, Liu ZX, Pu WJ, Lv Z, He LJ, Li Y, Zhou Q, Lui KO, Zhou B. Pre-existing beta cells but not progenitors contribute to new beta cells in the adult pancreas. Nat Metab, 2021, 3(3):352-365.
doi: 10.1038/s42255-021-00364-0 pmid: 33723463 |
[21] |
Mezza T, Kulkarni RN. The regulation of pre- and post-maturational plasticity of mammalian islet cell mass. Diabetologia, 2014, 57(7):1291-1303.
doi: 10.1007/s00125-014-3251-7 |
[22] |
Rieck S, Kaestner KH. Expansion of beta-cell mass in response to pregnancy. Trends Endocrinol Metab, 2010, 21(3):151-158.
doi: 10.1016/j.tem.2009.11.001 |
[23] |
Bonner-Weir S, Trent DF, Weir GC. Partial pancreatectomy in the rat and subsequent defect in glucose- induced insulin release. J Clin Invest, 1983, 71(6):1544-1553.
pmid: 6134752 |
[24] |
Carol B, Fitzgerald PJ. Pancreatic acinar cell regeneration. VI. Estimation of error of the autoradiographic labeling index (thymidine-H3)—maximum possible error (MPRE) and sensitivity (S). Am J Pathol, 1968, 53(6):971-987.
pmid: 5699782 |
[25] |
Menge BA, Tannapfel A, Belyaev O, Drescher R, Müller C, Uhl W, Schmidt WE, Meier JJ. Partial pancreatectomy in adult humans does not provoke beta-cell regeneration. Diabetes, 2008, 57(1):142-149.
doi: 10.2337/db07-1294 |
[26] |
Rankin MM, Wilbur CJ, Rak K, Shields EJ, Granger A, Kushner JA. β-Cells are not generated in pancreatic duct ligation-induced injury in adult mice. Diabetes, 2013, 62(5):1634-1645.
doi: 10.2337/db12-0848 |
[27] |
Rankin MM, Kushner JA. Adaptive beta-cell proliferation is severely restricted with advanced age. Diabetes, 2009, 58(6):1365-1372.
doi: 10.2337/db08-1198 |
[28] |
Tschen SI, Dhawan S, Gurlo T, Bhushan A. Age- dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice. Diabetes, 2009, 58(6):1312-1320.
doi: 10.2337/db08-1651 |
[29] |
Slack JM. Developmental biology of the pancreas. Development, 1995, 121(6):1569-1580.
pmid: 7600975 |
[30] |
Xu XB, D'Hoker J, Stangé G, Bonné S, De Leu N, Xiao XW, Van de Casteele M, Mellitzer G, Ling ZD, Pipeleers D, Bouwens L, Scharfmann R, Gradwohl G, Heimberg H. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell, 2008, 132(2):197-207.
doi: 10.1016/j.cell.2007.12.015 |
[31] |
Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, Sharma A, Bonner-Weir S. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA, 2008, 105(50):19915-19919.
doi: 10.1073/pnas.0805803105 |
[32] |
Pan FC, Bankaitis ED, Boyer D, Xu XB, Van de Casteele M, Magnuson MA, Heimberg H, Wright CVE. Spatiotemporal patterns of multipotentiality in Ptf1a- expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development, 2013, 140(4):751-764.
doi: 10.1242/dev.090159 |
[33] |
Jin L, Gao D, Feng T, Tremblay JR, Ghazalli N, Luo A, Rawson J, Quijano JC, Chai J, Wedeken L, Hsu J, LeBon J, Walker S, Shih HP, Mahdavi A, Tirrell DA, Riggs AD, Ku HT. Cells with surface expression of CD133highCD71low are enriched for tripotent colony- forming progenitor cells in the adult murine pancreas. Stem Cell Res, 2016, 16(1):40-53.
doi: 10.1016/j.scr.2015.11.015 |
[34] |
Rovira M, Scott SG, Liss AS, Jensen J, Thayer SP, Leach SD. Isolation and characterization of centroacinar/ terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci USA, 2010, 107(1):75-80.
doi: 10.1073/pnas.0912589107 |
[35] |
Criscimanna A, Speicher JA, Houshmand G, Shiota C, Prasadan K, Ji BA, Logsdon CD, Gittes GK, Esni F. Duct cells contribute to regeneration of endocrine and acinar cells following pancreatic damage in adult mice. Gastroenterology, 2011, 141(4): 1451-1462,1462.e1- 1462.e6.
doi: 10.1053/j.gastro.2011.07.003 pmid: 21763240 |
[36] |
El-Gohary Y, Wiersch J, Tulachan S, Xiao XW, Guo P, Rymer C, Fischbach S, Prasadan K, Shiota C, Gaffar I, Song ZW, Galambos C, Esni F, Gittes GK. Intraislet pancreatic ducts can give rise to insulin-positive cells. Endocrinology, 2016, 157(1):166-175.
doi: 10.1210/en.2015-1175 pmid: 26505114 |
[37] |
Wang DS, Wang JQ, Bai LY, Pan H, Feng H, Clevers H, Zeng YA. Long-term expansion of pancreatic islet organoids from resident Procr + progenitors. Cell, 2020, 180(6): 1198-1211.e19.
doi: 10.1016/j.cell.2020.02.048 |
[38] |
Gribben C, Lambert C, Messal HA, Hubber EL, Rackham C, Evans I, Heimberg H, Jones P, Sancho R, Behrens A. Ductal Ngn3-expressing progenitors contribute to adult β cell neogenesis in the pancreas. Cell Stem Cell, 2021, 28(11): 2000-2008.e4.
doi: 10.1016/j.stem.2021.08.003 |
[39] |
He LJ, Li Y, Li Y, Pu WJ, Huang XZ, Tian XY, Wang Y, Zhang H, Liu QZ, Zhang LB, Zhao H, Tang J, Ji HB, Cai DQ, Han ZB, Han ZC, Nie Y, Hu SS, Wang QD, Sun RL, Fei J, Wang FC, Chen T, Yan Y, Huang HF, Pu WT, Zhou B. Enhancing the precision of genetic lineage tracing using dual recombinases. Nat Med, 2017, 23(12):1488-1498.
doi: 10.1038/nm.4437 |
[40] |
Yu K, Fischbach S, Xiao XW. Beta cell regeneration in adult mice: controversy over the involvement of stem cells. Curr Stem Cell Res Ther, 2016, 11(7):542-546.
doi: 10.2174/1574888X10666141126113110 |
[41] |
Zhao H, Lui KO, Zhou B. Pancreatic beta cell neogenesis: debates and updates. Cell Metab, 2021, 33(11):2105-2107.
doi: 10.1016/j.cmet.2021.10.007 |
[42] |
Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes, 1995, 44(3):249-256.
pmid: 7883109 |
[43] |
Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA. Very slow turnover of beta-cells in aged adult mice. Diabetes, 2005, 54(9):2557-2567.
doi: 10.2337/diabetes.54.9.2557 |
[44] |
Karnik SK, Chen HN, McLean GW, Heit JJ, Gu XY, Zhang AY, Fontaine M, Yen MH, Kim SK. Menin controls growth of pancreatic beta-cells in pregnant mice and promotes gestational diabetes mellitus. Science, 2007, 318(5851):806-809.
doi: 10.1126/science.1146812 |
[45] |
Zhang HJ, Zhang J, Pope CF, Crawford LA, Vasavada RC, Jagasia SM, Gannon M. Gestational diabetes mellitus resulting from impaired beta-cell compensation in the absence of FoxM1, a novel downstream effector of placental lactogen. Diabetes, 2010, 59(1):143-152.
doi: 10.2337/db09-0050 |
[46] |
Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H, Fujitani Y, Kawamori R, Miyatsuka T, Kosaka Y, Yang K, Honig G, van der Hart M, Kishimoto N, Wang JH, Yagihashi S, Tecott LH, Watada H, German MS. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med, 2010, 16(7):804-808.
doi: 10.1038/nm.2173 |
[47] |
Ernst S, Demirci C, Valle S, Velazquez-Garcia S, Garcia-Ocaña A. Mechanisms in the adaptation of maternal β-cells during pregnancy. Diabetes Manag (Lond), 2011, 1(2):239-248.
doi: 10.2217/dmt.10.24 pmid: 21845205 |
[48] |
Butler AE, Cao-Minh L, Galasso R, Rizza RA, Corradin A, Cobelli C, Butler PC. Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia, 2010, 53(10):2167-2176.
doi: 10.1007/s00125-010-1809-6 pmid: 20523966 |
[49] |
Saisho Y, Butler AE, Manesso E, Elashoff D, Rizza RA, Butler PC. β-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care, 2013, 36(1):111-117.
doi: 10.2337/dc12-0421 |
[50] |
Bader E, Migliorini A, Gegg M, Moruzzi N, Gerdes J, Roscioni SS, Bakhti M, Brandl E, Irmler M, Beckers J, Aichler M, Feuchtinger A, Leitzinger C, Zischka H, Wang-Sattler R, Jastroch M, Tschöp M, Machicao F, Staiger H, Häring HU, Chmelova H, Chouinard JA, Oskolkov N, Korsgren O, Speier S, Lickert H. Identification of proliferative and mature β-cells in the islets of Langerhans. Nature, 2016, 535(7612):430-434.
doi: 10.1038/nature18624 |
[51] |
Yu XX, Xu CR. Understanding generation and regeneration of pancreatic β cells from a single-cell perspective. Development, 2020, 147(7): dev179051.
doi: 10.1242/dev.179051 |
[52] |
Dorrell C, Schug J, Canaday PS, Russ HA, Tarlow BD, Grompe MT, Horton T, Hebrok M, Streeter PR, Kaestner KH, Grompe M. Human islets contain four distinct subtypes of β cells. Nat Commun, 2016, 7:11756.
doi: 10.1038/ncomms11756 pmid: 27399229 |
[53] |
Chen HN, Gu XY, Liu YH, Wang J, Wirt SE, Bottino R, Schorle H, Sage J, Kim SK. PDGF signalling controls age-dependent proliferation in pancreatic β-cells. Nature, 2011, 478(7369):349-355.
doi: 10.1038/nature10502 |
[54] |
Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Anderson RM, German MS, Stainier DYR. Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab, 2012, 15(6):885-894.
doi: 10.1016/j.cmet.2012.04.018 pmid: 22608007 |
[55] |
Annes JP, Ryu JH, Lam K, Carolan PJ, Utz K, Hollister-Lock J, Arvanites AC, Rubin LL, Weir G, Melton DA. Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell replication. Proc Natl Acad Sci USA, 2012, 109(10):3915-3920.
doi: 10.1073/pnas.1201149109 |
[56] | Xiao XW, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, Song ZW, El-Gohary Y, Prasadan K, Shiota C, Gittes GK. M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci USA, 2014, 111(13):E1211-E1220. |
[57] |
El Ouaamari A, Dirice E, Gedeon N, Hu J, Zhou JY, Shirakawa J, Hou LF, Goodman J, Karampelias C, Qiang GF, Boucher J, Martinez R, Gritsenko MA, De Jesus DF, Kahraman S, Bhatt S, Smith RD, Beer HD, Jungtrakoon P, Gong YP, Goldfine AB, Liew CW, Doria A, Andersson O, Qian WJ, Remold-O'Donnell E, Kulkarni RN. SerpinB1 promotes pancreatic β cell proliferation. Cell Metab, 2016, 23(1):194-205.
doi: 10.1016/j.cmet.2015.12.001 |
[58] |
Schulz N, Liu KC, Charbord J, Mattsson CL, Tao LJ, Tworus D, Andersson O. Critical role for adenosine receptor A2a in β-cell proliferation. Mol Metab, 2016, 5(11):1138-1146.
doi: S2212-8778(16)30157-0 pmid: 27818940 |
[59] |
Wang P, Karakose E, Liu HT, Swartz E, Ackeifi C, Zlatanic V, Wilson J, González BJ, Bender A, Takane KK, Ye L, Harb G, Pagliuca F, Homann D, Egli D, Argmann C, Scott DK, Garcia-Ocaña A, Stewart AF. Combined inhibition of DYRK1A, SMAD, Trithorax pathways synergizes to induce robust replication in adult human beta cells. Cell Metab, 2019, 29(3): 638-652.e5.
doi: 10.1016/j.cmet.2018.12.005 |
[60] |
Sehrawat A, Shiota C, Mohamed N, DiNicola J, Saleh M, Kalsi R, Zhang T, Wang Y, Prasadan K, Gittes GK. SMAD7 enhances adult β-cell proliferation without significantly affecting β-cell function in mice. J Biol Chem, 2020, 295(15):4858-4869.
doi: 10.1074/jbc.RA119.011011 |
[61] |
Charbord J, Ren LP, Sharma RB, Johansson A, Ågren R, Chu LH, Tworus D, Schulz N, Charbord P, Stewart AF, Wang P, Alonso LC, Andersson O. In vivo screen identifies a SIK inhibitor that induces β cell proliferation through a transient UPR. Nat Metab, 2021, 3(5):682-700.
doi: 10.1038/s42255-021-00391-x pmid: 34031592 |
[62] |
Shen WJ, Taylor B, Jin QH, Nguyen-Tran V, Meeusen S, Zhang YQ, Kamireddy A, Swafford A, Powers AF, Walker J, Lamb J, Bursalaya B, DiDonato M, Harb G, Qiu MH, Filippi CM, Deaton L, Turk CN, Suarez- Pinzon WL, Liu YH, Hao XS, Mo TT, Yan SS, Li J, Herman AE, Hering BJ, Wu T, Martin Seidel H, McNamara P, Glynne R, Laffitte B. Inhibition of DYRK1A and GSK3B induces human β-cell proliferation. Nat Commun, 2015, 6:8372.
doi: 10.1038/ncomms9372 |
[63] |
Wang P, Alvarez-Perez JC, Felsenfeld DP, Liu HT, Sivendran S, Bender A, Kumar A, Sanchez R, Scott DK, Garcia-Ocaña A, Stewart AF. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat Med, 2015, 21(4):383-388.
doi: 10.1038/nm.3820 |
[64] |
Dirice E, Walpita D, Vetere A, Meier BC, Kahraman S, Hu J, Dančík V, Burns SM, Gilbert TJ, Olson DE, Clemons PA, Kulkarni RN, Wagner BK. Inhibition of DYRK1A stimulates human β-cell proliferation. Diabetes, 2016, 65(6):1660-1671.
doi: 10.2337/db15-1127 |
[65] |
Ansarullah, Jain C, Far FF, Homberg S, Wissmiller K, von Hahn FG, Raducanu A, Schirge S, Sterr M, Bilekova S, Siehler J, Wiener J, Oppenländer L, Morshedi A, Bastidas-Ponce A, Collden G, Irmler M, Beckers J, Feuchtinger A, Grzybek M, Ahlbrecht C, Feederle R, Plettenburg O, Muller TD, Meier M, Tschöp MH, Coskun Ü, Lickert H. Inceptor counteracts insulin signalling in β-cells to control glycaemia. Nature, 2021, 590(7845):326-331.
doi: 10.1038/s41586-021-03225-8 |
[66] |
Kulkarni RN, Mizrachi EB, Ocana AG, Stewart AF. Human β-cell proliferation and intracellular signaling: driving in the dark without a road map. Diabetes, 2012, 61(9):2205-2213.
doi: 10.2337/db12-0018 pmid: 22751699 |
[67] |
Bernal-Mizrachi E, Kulkarni RN, Scott DK, Mauvais- Jarvis F, Stewart AF, Garcia-Ocaña A. Human β-cell proliferation and intracellular signaling part 2: still driving in the dark without a road map. Diabetes, 2014, 63(3):819-831.
doi: 10.2337/db13-1146 pmid: 24556859 |
[68] |
Stewart AF, Hussain MA, García-Ocaña A, Vasavada RC, Bhushan A, Bernal-Mizrachi E, Kulkarni RN. Human β-cell proliferation and intracellular signaling: part 3. Diabetes, 2015, 64(6):1872-1885.
doi: 10.2337/db14-1843 pmid: 25999530 |
[69] |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5):861-872.
doi: 10.1016/j.cell.2007.11.019 |
[70] |
D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol, 2006, 24(11):1392-1401.
pmid: 17053790 |
[71] |
Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D'Amour KA, Carpenter MK, Baetge EE. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol, 2008, 26(4):443-452.
doi: 10.1038/nbt1393 |
[72] |
Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA. Generation of functional human pancreatic β cells in vitro. Cell, 2014, 159(2):428-439.
doi: 10.1016/j.cell.2014.09.040 pmid: 25303535 |
[73] |
Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O'Dwyer S, Quiskamp N, Mojibian M, Albrecht T, Yang YHC, Johnson JD, Kieffer TJ. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol, 2014, 32(11):1121-1133.
doi: 10.1038/nbt.3033 |
[74] |
Balboa D, Saarimäki-Vire J, Otonkoski T. Concise review: human pluripotent stem cells for the modeling of pancreatic β-cell pathology. Stem Cells, 2019, 37(1):33-41.
doi: 10.1002/stem.2913 pmid: 30270471 |
[75] |
Nair GG, Liu JS, Russ HA, Tran S, Saxton MS, Chen R, Juang C, Li ML, Nguyen VQ, Giacometti S, Puri S, Xing Y, Wang Y, Szot GL, Oberholzer J, Bhushan A, Hebrok M. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat Cell Biol, 2019, 21(2):263-274.
doi: 10.1038/s41556-018-0271-4 |
[76] |
Velazco-Cruz L, Song J, Maxwell KG, Goedegebuure MM, Augsornworawat P, Hogrebe NJ, Millman JR. Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Reports, 2019, 12(2):351-365.
doi: S2213-6711(18)30531-9 pmid: 30661993 |
[77] |
Veres A, Faust AL, Bushnell HL, Engquist EN, Kenty JHR, Harb G, Poh YC, Sintov E, Gürtler M, Pagliuca FW, Peterson QP, Melton DA. Charting cellular identity during human in vitro β-cell differentiation. Nature, 2019, 569(7756):368-373.
doi: 10.1038/s41586-019-1168-5 |
[78] |
Alvarez-Dominguez JR, Donaghey J, Rasouli N, Kenty JHR, Helman A, Charlton J, Straubhaar JR, Meissner A, Melton DA. Circadian entrainment triggers maturation of human in vitro islets. Cell Stem Cell, 2020, 26(1): 108-122.e10.
doi: S1934-5909(19)30466-7 pmid: 31839570 |
[79] |
Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR. Single-cell transcriptome profiling reveals β cell maturation in stem cell-derived islets after transplantation. Cell Rep, 2020, 32(8):108067.
doi: 10.1016/j.celrep.2020.108067 |
[80] |
Yoshihara E, O'Connor C, Gasser E, Wei Z, Oh TG, Tseng TW, Wang D, Cayabyab F, Dai Y, Yu RT, Liddle C, Atkins AR, Downes M, Evans RM. Immune-evasive human islet-like organoids ameliorate diabetes. Nature, 2020, 586(7830):606-611.
doi: 10.1038/s41586-020-2631-z |
[81] |
Hogrebe NJ, Maxwell KG, Augsornworawat P, Millman JR. Generation of insulin-producing pancreatic β cells from multiple human stem cell lines. Nat Protoc, 2021, 16(9):4109-4143.
doi: 10.1038/s41596-021-00560-y |
[82] |
Balboa D, Barsby T, Lithovius V, Saarimäki-Vire J, Omar-Hmeadi M, Dyachok O, Montaser H, Lund PE, Yang MY, Ibrahim H, Näätänen A, Chandra V, Vihinen H, Jokitalo E, Kvist J, Ustinov J, Nieminen AI, Kuuluvainen E, Hietakangas V, Katajisto P, Lau J, Carlsson PO, Barg S, Tengholm A, Otonkoski T. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat Biotechnol, 2022, doi: 10.1038/s41587-022-01219-z.
doi: 10.1038/s41587-022-01219-z |
[83] |
Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature, 2010, 464(7292):1149-1154.
doi: 10.1038/nature08894 |
[84] |
Chera S, Baronnier D, Ghila L, Cigliola V, Jensen JN, Gu GQ, Furuyama K, Thorel F, Gribble FM, Reimann F, Herrera PL. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature, 2014, 514(7523):503-507.
doi: 10.1038/nature13633 |
[85] |
Collombat P, Xu XB, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, Madsen OD, Serup P, Heimberg H, Mansouri A. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell, 2009, 138(3):449-462.
doi: 10.1016/j.cell.2009.05.035 pmid: 19665969 |
[86] |
Courtney M, Gjernes E, Druelle N, Ravaud C, Vieira A, Ben-Othman N, Pfeifer A, Avolio F, Leuckx G, Lacas- Gervais S, Burel-Vandenbos F, Ambrosetti D, Hecksher- Sorensen J, Ravassard P, Heimberg H, Mansouri A, Collombat P. The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells. PLoS Genet, 2013, 9(10):e1003934.
doi: 10.1371/journal.pgen.1003934 |
[87] |
Ben-Othman N, Vieira A, Courtney M, Record F, Gjernes E, Avolio F, Hadzic B, Druelle N, Napolitano T, Navarro-Sanz S, Silvano S, Al-Hasani K, Pfeifer A, Lacas-Gervais S, Leuckx G, Marroquí L, Thévenet J, Madsen OD, Eizirik DL, Heimberg H, Kerr-Conte J, Pattou F, Mansouri A, Collombat P. Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis. Cell, 2017, 168(1-2): 73-85.e11.
doi: S0092-8674(16)31523-9 pmid: 27916274 |
[88] |
Lee S, Zhang J, Saravanakumar S, Flisher MF, Grimm DR, van der Meulen T, Huising MO. Virgin β-cells at the neogenic niche proliferate normally and mature slowly. Diabetes, 2021, 70(5):1070-1083.
doi: 10.2337/db20-0679 |
[89] |
van der Meulen T, Mawla AM, DiGruccio MR, Adams MW, Nies V, Dólleman S, Liu SM, Ackermann AM, Cáceres E, Hunter AE, Kaestner KH, Donaldson CJ, Huising MO. Virgin beta cells persist throughout life at a neogenic niche within pancreatic islets. Cell Metab, 2017, 25(4): 911-926.e6.
doi: 10.1016/j.cmet.2017.03.017 |
[90] |
Qiu WL, Zhang YW, Feng Y, Li LC, Yang L, Xu CR. Deciphering pancreatic islet β cell and α cell maturation pathways and characteristic features at the single-cell level. Cell Metab, 2017, 25(5): 1194-1205.e4.
doi: 10.1016/j.cmet.2017.04.003 |
[91] |
Gannon M, Gamer LW, Wright CV. Regulatory regions driving developmental and tissue-specific expression of the essential pancreatic gene pdx1. Dev Biol, 2001, 238(1):185-201.
pmid: 11784003 |
[92] |
Aramata S, Han SI, Kataoka K. Roles and regulation of transcription factor MafA in islet beta-cells. Endocr J, 2007, 54(5):659-666.
doi: 10.1507/endocrj.KR-101 |
[93] |
Hang Y, Stein R. MafA and MafB activity in pancreatic β cells. Trends Endocrinol Metab, 2011, 22(9):364-373.
doi: 10.1016/j.tem.2011.05.003 |
[94] |
He KH, Juhl K, Karadimos M, El Khattabi I, Fitzpatrick C, Bonner-Weir S, Sharma A. Differentiation of pancreatic endocrine progenitors reversibly blocked by premature induction of MafA. Dev Biol, 2014, 385(1):2-12.
doi: 10.1016/j.ydbio.2013.10.024 |
[95] |
Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA, 2000, 97(4):1607-1611.
doi: 10.1073/pnas.97.4.1607 |
[96] |
Gu GQ, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development, 2002, 129(10):2447-2457.
doi: 10.1242/dev.129.10.2447 |
[97] |
Wang S, Jensen JN, Seymour PA, Hsu W, Dor Y, Sander M, Magnuson MA, Serup P, Gu GQ. Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function. Proc Natl Acad Sci USA, 2009, 106(24):9715-9720.
doi: 10.1073/pnas.0904247106 |
[98] |
Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 2008, 455(7213):627-632.
doi: 10.1038/nature07314 |
[99] |
Akinci E, Banga A, Greder LV, Dutton JR, Slack JMW. Reprogramming of pancreatic exocrine cells towards a beta (β) cell character using Pdx1, Ngn3 and MafA. Biochem J, 2012, 442(3):539-550.
doi: 10.1042/BJ20111678 pmid: 22150363 |
[100] |
Li WD, Cavelti-Weder C, Zhang YY, Clement K, Donovan S, Gonzalez G, Zhu J, Stemann M, Xu K, Hashimoto T, Yamada T, Nakanishi M, Zhang YM, Zeng S, Gifford D, Meissner A, Weir G, Zhou Q. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. Nat Biotechnol, 2014, 32(12):1223-1230.
doi: 10.1038/nbt.3082 |
[101] |
Banga A, Akinci E, Greder LV, Dutton JR, Slack JMW. In vivo reprogramming of Sox9 + cells in the liver to insulin-secreting ducts. Proc Natl Acad Sci USA, 2012, 109(38):15336-15341.
doi: 10.1073/pnas.1201701109 |
[102] |
Cerdá-Esteban N, Naumann H, Ruzittu S, Mah N, Pongrac IM, Cozzitorto C, Hommel A, Andrade-Navarro MA, Bonifacio E, Spagnoli FM. Stepwise reprogramming of liver cells to a pancreas progenitor state by the transcriptional regulator Tgif2. Nat Commun, 2017, 8:14127.
doi: 10.1038/ncomms14127 pmid: 28193997 |
[103] |
Xiao XW, Guo P, Shiota C, Zhang T, Coudriet GM, Fischbach S, Prasadan K, Fusco J, Ramachandran S, Witkowski P, Piganelli JD, Gittes GK. Endogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetes. Cell Stem Cell, 2018, 22(1): 78-90.e4.
doi: 10.1016/j.stem.2017.11.020 |
[104] |
Sancho R, Gruber R, Gu GQ, Behrens A. Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells. Cell Stem Cell, 2014, 15(2):139-153.
doi: 10.1016/j.stem.2014.06.019 pmid: 25105579 |
[105] |
Ariyachet C, Tovaglieri A, Xiang GJ, Lu JQ, Shah MS, Richmond CA, Verbeke C, Melton DA, Stanger BZ, Mooney D, Shivdasani RA, Mahony S, Xia Q, Breault DT, Zhou Q. Reprogrammed stomach tissue as a renewable source of functional β cells for blood glucose regulation. Cell Stem Cell, 2016, 18(3):410-421.
doi: 10.1016/j.stem.2016.01.003 |
[106] |
Talchai C, Xuan SH, Kitamura T, DePinho RA, Accili D. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat Genet, 2012, 44(4):406-412.
doi: 10.1038/ng.2215 |
[107] |
Chen YJ, Finkbeiner SR, Weinblatt D, Emmett MJ, Tameire F, Yousefi M, Yang CH, Maehr R, Zhou Q, Shemer R, Dor Y, Li CH, Spence JR, Stanger BZ. De novo formation of insulin-producing "neo-β cell islets" from intestinal crypts. Cell Rep, 2014, 6(6):1046-1058.
doi: 10.1016/j.celrep.2014.02.013 |
[108] |
Katz LS, Geras-Raaka E, Gershengorn MC. Reprogramming adult human dermal fibroblasts to islet-like cells by epigenetic modification coupled to transcription factor modulation. Stem Cells Dev, 2013, 22(18):2551-2560.
doi: 10.1089/scd.2013.0134 |
[109] |
Lee J, Sugiyama T, Liu YH, Wang J, Gu XY, Lei J, Markmann JF, Miyazaki S, Miyazaki JI, Szot GL, Bottino R, Kim SK. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. eLife, 2013, 2:e00940.
doi: 10.7554/eLife.00940 |
[110] |
Lima MJ, Muir KR, Docherty HM, Drummond R, McGowan NWA, Forbes S, Heremans Y, Houbracken I, Ross JA, Forbes SJ, Ravassard P, Heimberg H, Casey J, Docherty K. Suppression of epithelial-to-mesenchymal transitioning enhances ex vivo reprogramming of human exocrine pancreatic tissue toward functional insulin- producing β-like cells. Diabetes, 2013, 62(8):2821-2833.
doi: 10.2337/db12-1256 |
[111] |
Bouchi R, Foo KS, Hua HQ, Tsuchiya K, Ohmura Y, Sandoval PR, Ratner LE, Egli D, Leibel RL, Accili D. FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures. Nat Commun, 2014, 5:4242.
doi: 10.1038/ncomms5242 |
[112] |
Dave SD, Vanikar AV, Trivedi HL. In-vitro generation of human adipose tissue derived insulin secreting cells: up-regulation of Pax-6, Ipf-1 and Isl-1. Cytotechnology, 2014, 66(2):299-307.
doi: 10.1007/s10616-013-9573-3 |
[113] |
Lemper M, Leuckx G, Heremans Y, German MS, Heimberg H, Bouwens L, Baeyens L. Reprogramming of human pancreatic exocrine cells to β-like cells. Cell Death Differ, 2015, 22(7):1117-1130.
doi: 10.1038/cdd.2014.193 pmid: 25476775 |
[114] |
Galivo F, Benedetti E, Wang YH, Pelz C, Schug J, Kaestner KH, Grompe M. Reprogramming human gallbladder cells into insulin-producing β-like cells. PLoS One, 2017, 12(8):e0181812.
doi: 10.1371/journal.pone.0181812 |
[115] |
De Vos A, Heimberg H, Quartier E, Huypens P, Bouwens L, Pipeleers D, Schuit F. Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J Clin Invest, 1995, 96(5):2489-2495.
pmid: 7593639 |
[116] |
Ferrer J, Benito C, Gomis R. Pancreatic islet GLUT2 glucose transporter mRNA and protein expression in humans with and without NIDDM. Diabetes, 1995, 44(12):1369-1374.
pmid: 7589840 |
[1] | 吴玲玲, 张小玉, 李晓, 靳建军, 杨公社, 史新娥. miR-196b-5p促进成肌细胞增殖分化[J]. 遗传, 2023, 45(5): 435-446. |
[2] | 王翠玲, 刘信燚, 王亚会, 张争, 王治东, 周钢桥. MCM2通过抑制p53信号通路促进胆管癌细胞的增殖、迁移和侵袭[J]. 遗传, 2022, 44(3): 230-244. |
[3] | 余志鑫, 李鹏宇, 李凯, 缪时英, 王琳芳, 宋伟. 精原干细胞微环境研究进展[J]. 遗传, 2022, 44(12): 1103-1116. |
[4] | 马克学, 李睿, 郭芳莹, 宋鸽鸽, 吴萌, 陈广文, 刘德增. 细胞自噬基因Atg6在涡虫中枢神经系统再生中的功能研究[J]. 遗传, 2021, 43(8): 792-801. |
[5] | 唐湘薇, 楚丹, 颜赛娜, 尹艳飞, 卞桥, 翁波, 陈斌, 冉茂良. miR-191靶向BDNF基因通过激活PI3K/AKT信号通路促进猪未成熟支持细胞增殖[J]. 遗传, 2021, 43(7): 680-693. |
[6] | 邹礼平, 潘铖, 王梦馨, 崔林, 韩宝瑜. 激素调控植物成花机理研究进展[J]. 遗传, 2020, 42(8): 739-751. |
[7] | 杜坤, 毛初阳, 任安勇, 吴雪梅, 李庆玲, 陈婷婷, 陈仕毅, 赖松家. 家兔前体脂肪细胞分化不同时期基因表达谱分析[J]. 遗传, 2020, 42(3): 309-320. |
[8] | 陈万银, 颜一丹, 栾晓瑾, 王敏, 方杰. CG8005基因在果蝇睾丸生殖细胞中的功能分析[J]. 遗传, 2020, 42(11): 1122-1132. |
[9] | 杨科, 薛征, 吕湘. 细胞终末分化过程中三维基因组结构与功能调控的分子机制[J]. 遗传, 2020, 42(1): 32-44. |
[10] | 余同露,蔡栋梁,朱根凤,叶晓娟,闵太善,陈红岩,卢大儒,陈浩明. CSN4基因干扰对乳腺癌MDA-MB-231细胞增殖和凋亡的影响[J]. 遗传, 2019, 41(4): 318-326. |
[11] | 黄子莹, 李龙, 李倩倩, 刘向东, 李长春. lncRNA TCONS_00815878对猪骨骼肌卫星细胞分化的影响[J]. 遗传, 2019, 41(12): 1119-1128. |
[12] | 夏蒙蒙,申雪沂,牛长敏,夏静,孙红亚,郑英. MicroRNA参与调控睾丸支持细胞的增殖与粘附功能[J]. 遗传, 2018, 40(9): 724-732. |
[13] | 李欢, 冯晋川, 李贵林, 王讯, 李明洲, 刘海峰. Lnc-RAP3对小鼠3T3-L1前脂肪细胞分化的影响[J]. 遗传, 2018, 40(9): 758-766. |
[14] | 杨志, 姚俊, 曹新. FGF信号通路在内耳发育调控和毛细胞再生中的作用[J]. 遗传, 2018, 40(7): 515-524. |
[15] | 冉茂良, 董莲花, 翁波, 曹蓉, 彭馥芝, 高虎, 罗荟, 陈斌. miR-362靶向ZNF644基因调控猪未成熟支持细胞的增殖和凋亡[J]. 遗传, 2018, 40(7): 572-584. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: