[1] |
Li LH, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol, 2005, 21: 605-631.
pmid: 16212509
|
[2] |
Cai YH, Wang JJ, Zou K. The progresses of spermatogonial stem cells sorting using fluorescence-activated cell sorting. Stem Cell Rev Rep, 2020, 16(1): 94-102.
doi: 10.1007/s12015-019-09929-9
pmid: 31792769
|
[3] |
Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc Natl Acad Sci USA, 2001, 98(11): 6186-6191.
doi: 10.1073/pnas.111158198
|
[4] |
Fayomi AP, Orwig KE. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res, 2018, 29: 207-214.
doi: S1873-5061(18)30110-7
pmid: 29730571
|
[5] |
Oatley JM, Brinster RL. The germline stem cell niche unit in mammalian testes. Physiol Rev, 2012, 92(2): 577-595.
doi: 10.1152/physrev.00025.2011
pmid: 22535892
|
[6] |
Chen LY, Willis WD, Eddy EM. Targeting the gdnf gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development. Proc Natl Acad Sci USA, 2016, 113(7): 1829-1834.
doi: 10.1073/pnas.1517994113
|
[7] |
Lord T, Oatley JM. A revised A(single) model to explain stem cell dynamics in the mouse male germline. Reproduction, 2017, 154(2): R55-R64.
doi: 10.1530/REP-17-0034
|
[8] |
de Rooij DG. The nature and dynamics of spermatogonial stem cells. Development, 2017, 144(17): 3022-3030.
doi: 10.1242/dev.146571
pmid: 28851723
|
[9] |
Ehmcke J, Schlatt S. A revised model for spermatogonial expansion in man: lessons from non-human primates. Reproduction, 2006, 132(5): 673-680.
pmid: 17071768
|
[10] |
Wu ZR, Luby-Phelps K, Bugde A, Molyneux LA, Denard B, Li WH, Süel GM, Garbers DL. Capacity for stochastic self-renewal and differentiation in mammalian spermatogonial stem cells. J Cell Biol, 2009, 187(4): 513-524.
doi: 10.1083/jcb.200907047
pmid: 19948499
|
[11] |
Hara K, Nakagawa T, Enomoto H, Suzuki M, Yamamoto M, Simons BD, Yoshida S. Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states. Cell Stem Cell, 2014, 14(5): 658-672.
doi: 10.1016/j.stem.2014.01.019
pmid: 24792118
|
[12] |
Nakagawa T, Nabeshima YI, Yoshida S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell, 2007, 12(2): 195-206.
pmid: 17276338
|
[13] |
Wong MD, Jin ZG, Xie T. Molecular mechanisms of germline stem cell regulation. Annu Rev Genet, 2005, 39: 173-195.
pmid: 16285857
|
[14] |
Schofield R. The relationship between the spleen colony- forming cell and the haemopoietic stem cell. Blood Cells, 1978, 4(1-2): 7-25.
pmid: 747780
|
[15] |
Guo JT, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie XC, Guo YX, Takei Y, Yun JN, Cai L, Kim R, Carrell DT, Goriely A, Hotaling JM, Cairns BR. The adult human testis transcriptional cell atlas. Cell Res, 2018, 28(12): 1141-1157.
doi: 10.1038/s41422-018-0099-2
pmid: 30315278
|
[16] |
Mäkelä JA, Hobbs RM. Molecular regulation of spermatogonial stem cell renewal and differentiation. Reproduction, 2019, 158(5): R169-R187.
doi: 10.1530/REP-18-0476
|
[17] |
Yoshida S. Mouse spermatogenesis reflects the unity and diversity of tissue stem cell niche systems. Cold Spring Harb Perspect Biol, 2020, 12(12): a036186.
doi: 10.1101/cshperspect.a036186
|
[18] |
Oakberg EF. Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat, 1956, 99(3): 507-516.
doi: 10.1002/aja.1000990307
|
[19] |
Leblond CP, Clermont Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci, 1952, 55(4): 548-573.
doi: 10.1111/j.1749-6632.1952.tb26576.x
|
[20] |
Hess RA. Quantitative and qualitative characteristics of the stages and transitions in the cycle of the rat seminiferous epithelium: light microscopic observations of perfusion-fixed and plastic-embedded testes. Biol Reprod, 1990, 43(3): 525-542.
pmid: 2271734
|
[21] |
Kitadate Y, Jörg DJ, Tokue M, Maruyama A, Ichikawa R, Tsuchiya S, Segi-Nishida E, Nakagawa T, Uchida A, Kimura-Yoshida C, Mizuno S, Sugiyama F, Azami T, Ema M, Noda C, Kobayashi S, Matsuo I, Kanai Y, Nagasawa T, Sugimoto Y, Takahashi S, Simons BD, Yoshida S. Competition for mitogens regulates spermatogenic stem cell homeostasis in an open niche. Cell Stem Cell, 2019, 24(1): 79-92.e6.
doi: S1934-5909(18)30549-6
pmid: 30581080
|
[22] |
Yoshida S, Sukeno M, Nabeshima YI. A vasculature- associated niche for undifferentiated spermatogonia in the mouse testis. Science, 2007, 317(5845): 1722-1726.
pmid: 17823316
|
[23] |
Oatley MJ, Racicot KE, Oatley JM. Sertoli cells dictate spermatogonial stem cell niches in the mouse testis. Biol Reprod, 2011, 84(4): 639-645.
doi: 10.1095/biolreprod.110.087320
pmid: 21084712
|
[24] |
Lord T, Nixon B. Metabolic changes accompanying spermatogonial stem cell differentiation. Dev Cell, 2020, 52(4): 399-411.
doi: S1534-5807(20)30015-0
pmid: 32097651
|
[25] |
Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell, 2010, 7(2): 150-161.
doi: 10.1016/j.stem.2010.07.007
|