遗传 ›› 2023, Vol. 45 ›› Issue (3): 187-197.doi: 10.16288/j.yczz.22-416
收稿日期:
2022-12-21
修回日期:
2023-01-30
出版日期:
2023-03-20
发布日期:
2023-02-24
通讯作者:
田烨
E-mail:zhangqian@genetics.ac.cn;wangzihao@genetics.ac.cn;ytian@genetics.ac.cn
作者简介:
张茜,博士,研究方向:线粒体未折叠蛋白反应的跨组织调控。E-mail: 基金资助:
Qian Zhang1(), Zihao Wang1,2(), Ye Tian1,2()
Received:
2022-12-21
Revised:
2023-01-30
Online:
2023-03-20
Published:
2023-02-24
Contact:
Tian Ye
E-mail:zhangqian@genetics.ac.cn;wangzihao@genetics.ac.cn;ytian@genetics.ac.cn
Supported by:
摘要:
线粒体内蛋白质稳态的平衡对于细胞正常的生理功能非常关键。线粒体蛋白稳态失衡时,细胞会启动应激反应机制,即线粒体未折叠蛋白反应(mitochondrial unfolded protein response,UPRmt),修复线粒体功能,平衡细胞内稳态。尽管线粒体的严重损伤对机体是有害的,但在线虫(Caenorhabditis elegans)、果蝇(Drosophila melanogaste)及小鼠(Mus musculus)中都有研究表明线粒体的轻微损伤可以通过激活UPRmt,促进寿命延长。有趣的是,在没有直接经历线粒体损伤的细胞或组织中,UPRmt也能以非自主方式被诱导。不同组织间可以通过名为“mitokine”的细胞因子进行UPRmt的跨组织调控,系统性地协调机体整体的压力适应能力和抗衰老能力。该调控机制与衰老相关神经退行性疾病、癌症等多种疾病密切相关,近年来有关研究与日俱增。本文系统总结了线粒体应激及其组织间通讯的机制,并介绍了跨组织线粒体应激交流信号“mitokine”调控衰老进程的最新研究进展,以期为跨组织信号调控和机体衰老等研究提供参考。
张茜, 王子豪, 田烨. 跨组织线粒体应激信号交流调控机体衰老研究进展[J]. 遗传, 2023, 45(3): 187-197.
Qian Zhang, Zihao Wang, Ye Tian. Inter-tissue communication of mitochondrial stress in aging[J]. Hereditas(Beijing), 2023, 45(3): 187-197.
[1] |
Van Der Bliek AM, Sedensky MM, Morgan PG.Cell biology of the mitochondrion. Genetics, 2017, 207(3): 843-871.
doi: 10.1534/genetics.117.300262 pmid: 29097398 |
[2] |
Pellegrino MW, Nargund AM, Kirienko NV, Gillis R, Fiorese CJ, Haynes CM. Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature, 2014, 516(7531): 414-417.
doi: 10.1038/nature13818 |
[3] |
Kurland CG, Andersson SGE. Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev, 2000, 64(4): 786-820.
doi: 10.1128/MMBR.64.4.786-820.2000 |
[4] |
Friedman JR, Nunnari J. Mitochondrial form and function. Nature, 2014, 505(7483): 335-343.
doi: 10.1038/nature12985 |
[5] | Shpilka T, Haynes CM. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol, 2018, 19(2): 109-120. |
[6] |
Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol, 2018, 28(4): R170-R185.
doi: 10.1016/j.cub.2018.01.004 |
[7] |
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol, 2020, 21(2): 85-100.
doi: 10.1038/s41580-019-0173-8 |
[8] |
Copeland JM, Cho J, Lo Jr T, Hur JH, Bahadorani S, Arabyan T, Rabie J, Soh J, Walker DW. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol, 2009, 19(19): 1591-1598.
doi: 10.1016/j.cub.2009.08.016 pmid: 19747824 |
[9] |
Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C. Rates of behavior and aging specified by mitochondrial function during development. Science, 2002, 298(5602): 2398-2401.
pmid: 12471266 |
[10] |
Zhu D, Li XY, Tian Y. Mitochondrial-to-nuclear communication in aging: an epigenetic perspective. Trends Biochem Sci, 2022, 47(8): 645-659.
doi: 10.1016/j.tibs.2022.03.008 pmid: 35397926 |
[11] |
Liu XX, Jiang N, Hughes B, Bigras E, Shoubridge E, Hekimi S. Evolutionary conservation of the clk-1- dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev, 2005, 19(20): 2424-2434.
doi: 10.1101/gad.1352905 |
[12] |
Feng J, Bussière F, Hekimi S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell, 2001, 1(5): 633-644.
pmid: 11709184 |
[13] |
Durieux J, Wolff S, Dillin A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell, 2011, 144(1): 79-91.
doi: 10.1016/j.cell.2010.12.016 pmid: 21215371 |
[14] |
Kang GM, Min SH, Lee CH, Kim JY, Lim HS, Choi MJ, Jung SB, Park JW, Kim S, Park CB, Dugu H, Choi JH, Jang WH, Park SE, Cho YM, Kim JG, Kim KG, Choi CS, Kim YB, Lee C, Shong M, Kim MS. Mitohormesis in hypothalamic POMC neurons mediates regular exercise- induced high-turnover metabolism. Cell Metab, 2021, 33(2): 334-349.e6.
doi: 10.1016/j.cmet.2021.01.003 |
[15] |
Gómez-Valadés AG, Pozo M, Varela L, Boudjadja MB, Ramírez S, Chivite I, Eyre E, Haddad-Tóvolli R, Obri A, Milà-Guasch M, Altirriba J, Schneeberger M, Imbernón M, Garcia-Rendueles AR, Gama-Perez P, Rojo-Ruiz J, Rácz B, Alonso MT, Gomis R, Zorzano A, D'Agostino G, Alvarez CV, Nogueiras R, Garcia-Roves PM, Horvath TL, Claret M. Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis. Cell Metab, 2021, 33(9): 1820-1835.e9.
doi: 10.1016/j.cmet.2021.07.008 pmid: 34343501 |
[16] |
Su B, Wang XL, Zheng L, Perry G, Smith MA, Zhu XW. Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta, 2010, 1802(1): 135-142.
doi: 10.1016/j.bbadis.2009.09.013 pmid: 19799998 |
[17] |
Dunham-Snary KJ, Ballinger SW. Mitochondrial-nuclear DNA mismatch matters. Science, 2015, 349(6255): 1449-1450.
doi: 10.1126/science.aac5271 pmid: 26404813 |
[18] |
Matilainen O, Quirós PM, Auwerx J. Mitochondria and epigenetics—crosstalk in homeostasis and stress. Trends Cell Biol, 2017, 27(6): 453-463.
doi: S0962-8924(17)30028-4 pmid: 28274652 |
[19] |
Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic Biol Med, 2017, 107: 216-227.
doi: 10.1016/j.freeradbiomed.2016.11.050 |
[20] |
Hetz C, Zhang KZ, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol, 2020, 21(8): 421-438.
doi: 10.1038/s41580-020-0250-z |
[21] |
Anderson NS, Haynes CM. Folding the mitochondrial UPR into the integrated stress response. Trends Cell Biol, 2020, 30(6): 428-439.
doi: S0962-8924(20)30055-6 pmid: 32413314 |
[22] |
Martinus RD, Garth GP, Webster TL, Cartwright P, Naylor DJ, Høj PB, Hoogenraad NJ. Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem, 1996, 240(1): 98-103.
pmid: 8797841 |
[23] |
Zhao Q, Wang JH, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ. A mitochondrial specific stress response in mammalian cells. EMBO J, 2002, 21(17): 4411-4419.
pmid: 12198143 |
[24] |
Haynes CM, Petrova K, Benedetti C, Yang Y, Ron D. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell, 2007, 13(4): 467-480.
pmid: 17925224 |
[25] |
Haynes CM, Yang Y, Blais SP, Neubert TA, Ron D.The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell, 2010, 37(4): 529-540.
doi: 10.1016/j.molcel.2010.01.015 pmid: 20188671 |
[26] |
Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci, 2004, 117 (Pt 18): 4055-4066.
pmid: 15280428 |
[27] |
Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, Williams RW, Auwerx J. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature, 2013, 497(7450): 451-457.
doi: 10.1038/nature12188 |
[28] |
Lee SJ, Hwang AB, Kenyon C. Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol, 2010, 20(23): 2131-2136.
doi: 10.1016/j.cub.2010.10.057 |
[29] |
Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Cantó C, Mottis A, Jo YS, Viswanathan M, Schoonjans K, Guarente L, Auwerx J. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell, 2013, 154(2): 430-441
doi: 10.1016/j.cell.2013.06.016 pmid: 23870130 |
[30] |
Van Raamsdonk JM, Hekimi S.Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet, 2009, 5(2): e1000361.
doi: 10.1371/journal.pgen.1000361 |
[31] |
Tian Y, Garcia G, Bian Q, Steffen KK, Joe L, Wolff S, Meyer BJ, Dillin A. Mitochondrial stress induces chromatin reorganization to promote longevity and UPRmt. Cell, 2016, 165(5): 1197-1208.
doi: S0092-8674(16)30402-0 pmid: 27133166 |
[32] |
Deng P, Naresh NU, Du YG, Lamech LT, Yu J, Zhu LJ, Pukkila-Worley R, Haynes CM.Mitochondrial UPR repression during Pseudomonas aeruginosa infection requires the bZIP protein ZIP-3. Proc Natl Acad Sci USA, 2019, 116(13): 6146-6151.
doi: 10.1073/pnas.1817259116 pmid: 30850535 |
[33] |
Benedetti C, Haynes CM, Yang Y, Harding HP, Ron D. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics, 2006, 174(1): 229-239.
pmid: 16816413 |
[34] | Merkwirth C, Jovaisaite V, Durieux J, Matilainen O, Jordan SD, Quiros PM, Steffen KK, Williams EG, Mouchiroud L, Tronnes SU, Murillo V, Wolff SC, Shaw RJ, Auwerx J, Dillin A. Two conserved histone demethylases regulate mitochondrial stress-induced longevity. Cell Genetics, 2016, 165(5): 1209-1223. |
[35] |
Zhu D, Wu XY, Zhou J, Li XY, Huang XH, Li JS, Wu JB, Bian Q, Wang YC, Tian Y. NuRD mediates mitochondrial stress-induced longevity via chromatin remodeling in response to acetyl-CoA level. Sci Adv, 2020, 6(31): eabb2529.
doi: 10.1126/sciadv.abb2529 |
[36] |
Li TY, Sleiman MB, Li H, Gao AW, Mottis A, Bachmann AM, El Alam G, Li X, Goeminne LJE, Schoonjans K, Auwerx J. The transcriptional coactivator CBP/p300 is an evolutionarily conserved node that promotes longevity in response to mitochondrial stress. Nat Aging, 2021, 1(2): 165-178.
doi: 10.1038/s43587-020-00025-z pmid: 33718883 |
[37] |
Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science, 2012, 337(6094): 587-590.
doi: 10.1126/science.1223560 pmid: 22700657 |
[38] |
Shao L-W, Peng Q, Dong MY, Gao KY, Li YM, Li Y, Li CY, Liu Y. Histone deacetylase HDA-1 modulates mitochondrial stress response and longevity. Nat Commun, 2020, 11(1): 4639.
doi: 10.1038/s41467-020-18501-w pmid: 32934238 |
[39] |
Nargund AM, Fiorese CJ, Pellegrino MW, Deng P, Haynes CM. Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPRmt. Mol Cell, 2015, 58(1): 123-133.
doi: 10.1016/j.molcel.2015.02.008 pmid: 25773600 |
[40] |
Liu Y, Samuel BS, Breen PC, Ruvkun G. Caenorhabditis elegans pathways that surveil and defend mitochondria. Nature, 2014, 508(7496): 406-410.
doi: 10.1038/nature13204 |
[41] |
Estes KA, Dunbar TL, Powell JR, Ausubel FM, Troemel ER.bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans. Proc Natl Acad Sci USA, 2010, 107(5):2153-2158.
doi: 10.1073/pnas.0914643107 |
[42] |
Fiorese CJ, Schulz AM, Lin YF, Rosin N, Pellegrino MW, Haynes CM. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr Biol, 2016, 26(15): 2037-2043.
doi: S0960-9822(16)30614-5 pmid: 27426517 |
[43] |
Münch C, Harper JW. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature, 2016, 534(7609): 710-713.
doi: 10.1038/nature18302 |
[44] |
Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science, 2016, 352(6292): 1413-1416.
doi: 10.1126/science.aad9868 pmid: 27313038 |
[45] |
Fessler E, Eckl E-M, Schmitt S, Mancilla IA, Meyer- Bender MF, Hanf M, Philippou-Massier J, Krebs S, Zischka H, Jae LT. A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol. Nature, 2020, 579(7799): 433-437.
doi: 10.1038/s41586-020-2076-4 |
[46] |
Guo XY, Aviles G, Liu Y, Tian RL, Unger BA, Lin Y-HT, Wiita AP, Xu K, Correia MA, Kampmann M. Mitochondrial stress is relayed to the cytosol by an OMA1- DELE1-HRI pathway. Nature, 2020, 579(7799): 427-432.
doi: 10.1038/s41586-020-2078-2 |
[47] |
Samluk L, Urbanska M, Kisielewska K, Mohanraj K, Kim MJ, Machnicka K, Liszewska E, Jaworski J, Chacinska A. Cytosolic translational responses differ under conditions of severe short-term and long-term mitochondrial stress. Mol Biol Cell, 2019, 30(15): 1864-1877.
doi: 10.1091/mbc.E18-10-0628 pmid: 31116686 |
[48] |
Kim Y, Park J, Kim S, Kim MA, Kang MG, Kwak C, Kang M, Kim B, Rhee HW, Kim VN. PKR senses nuclear and mitochondrial signals by interacting with endogenous double-stranded RNAs. Mol Cell, 2018, 71(6): 1051- 1063.e6.
doi: S1097-2765(18)30598-7 pmid: 30174290 |
[49] |
Rath E, Berger E, Messlik A, Nunes T, Liu B, Kim SC, Hoogenraad N, Sans M, Sartor RB, Haller D. Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut, 2012, 61(9): 1269-1278.
doi: 10.1136/gutjnl-2011-300767 pmid: 21997551 |
[50] |
Michel S, Canonne M, Arnould T, Renard P. Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response. Mitochondrion, 2015, 21: 58-68.
doi: 10.1016/j.mito.2015.01.005 pmid: 25643991 |
[51] |
Naresh NU, Haynes CM. Signaling and regulation of the mitochondrial unfolded protein response. Cold Spring Harb Perspect Biol, 2019, 11(6): a033944.
doi: 10.1101/cshperspect.a033944 |
[52] |
Owusu-Ansah E, Song W, Perrimon N. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell, 2013, 155(3): 699-712.
doi: 10.1016/j.cell.2013.09.021 pmid: 24243023 |
[53] |
Berendzen KM, Durieux J, Shao LW, Tian Y, Kim HE, Wolff S, Liu Y, Dillin A. Neuroendocrine coordination of mitochondrial stress signaling and proteostasis. Cell, 2016, 166(6): 1553-1563.e10.
doi: S0092-8674(16)31139-4 pmid: 27610575 |
[54] |
Shao LW, Niu R, Liu YW. Neuropeptide signals cell non-autonomous mitochondrial unfolded protein response. Cell Res, 2016, 26(11): 1182-1196.
doi: 10.1038/cr.2016.118 pmid: 27767096 |
[55] |
Zhang Q, Wu XY, Chen P, Liu LM, Xin N, Tian Y, Dillin A. The mitochondrial unfolded protein response is mediated cell-non-autonomously by retromer-dependent Wnt signaling. Cell, 2018, 174(4): 870-883.e17.
doi: S0092-8674(18)30797-9 pmid: 30057120 |
[56] |
Chen LT, Lin CT, Lin LY, Hsu JM, Wu YC, Pan CL. Neuronal mitochondrial dynamics coordinate systemic mitochondrial morphology and stress response to confer pathogen resistance in C. elegans. Dev Cell, 2021, 56(12): 1770-1785.e12.
doi: 10.1016/j.devcel.2021.04.021 pmid: 33984269 |
[57] |
Liu YL, Zhou J, Zhang N, Wu XY, Zhang Q, Zhang WF, Li XY, Tian Y. Two sensory neurons coordinate the systemic mitochondrial stress response via GPCR signaling in C. elegans. Dev Cell, 2022, 57(21): 2469-2482.e5.
doi: 10.1016/j.devcel.2022.10.001 |
[58] |
Srinivasan S, Sadegh L, Elle IC, Christensen AGL, Faergeman NJ, Ashrafi K. Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms. Cell Metab, 2008, 7(6): 533-544.
doi: 10.1016/j.cmet.2008.04.012 pmid: 18522834 |
[59] |
Chen D, Taylor KP, Hall Q, Kaplan JM. The neuropeptides FLP-2 and PDF-1 act in concert to arouse Caenorhabditis elegans locomotion. Genetics, 2016, 204(3): 1151-1159.
doi: 10.1534/genetics.116.192898 |
[60] |
Waterson MJ, Horvath TL. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab, 2015, 22(6): 962-970.
doi: 10.1016/j.cmet.2015.09.026 pmid: 26603190 |
[61] |
Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6): 985-999.
doi: S0092-8674(17)30547-0 pmid: 28575679 |
[62] |
Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med, 2013, 19(2):179-192.
doi: 10.1038/nm.3074 pmid: 23389618 |
[63] |
Shang S, Hua F, Hu ZW. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget, 2017, 8(20): 33972-33989.
doi: 10.18632/oncotarget.15687 pmid: 28430641 |
[64] |
Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell, 2006, 125(3): 509-522.
doi: 10.1016/j.cell.2006.02.049 pmid: 16678095 |
[65] |
Christiane N-V, Eric W. Mutations affecting segment number and polarity in Drosophila. Nature, 1980, 287(5785): 795-801.
doi: 10.1038/287795a0 |
[66] |
Feige MJ, Hendershot LM. Disulfide bonds in ER protein folding and homeostasis. Curr Opin Cell Biol, 2011, 23(2): 167-175.
doi: 10.1016/j.ceb.2010.10.012 pmid: 21144725 |
[67] |
Li XY, Li JS, Zhu D, Zhang N, Hao XS, Zhang WF, Zhang Q, Liu YL, Wu XY, Tian Y.Protein disulfide isomerase PDI-6 regulates Wnt secretion to coordinate inter-tissue UPRmt activation and lifespan extension in C. elegans. Cell Rep, 2022, 39(10): 110931.
doi: 10.1016/j.celrep.2022.110931 |
[68] |
Zhang Q, Wang ZH, Zhang WF, Wen QB, Li XY, Zhou J, Wu XY, Guo YQ, Liu YL, Wei CS, Qian WF, Tian Y. The memory of neuronal mitochondrial stress is inherited transgenerationally via elevated mitochondrial DNA levels. Nat Cell Biol, 2021, 23(8): 870-880.
doi: 10.1038/s41556-021-00724-8 pmid: 34341532 |
[69] |
Zhang Q, Tian Y. Molecular insights into the transgenerational inheritance of stress memory. J Genet Genomics, 2021, 49(2): 89-95.
doi: 10.1016/j.jgg.2021.11.015 |
[70] |
Calculli G, Lee HJ, Shen K, Pham U, Herholz M, Trifunovic A, Dillin A, Vilchez D. Systemic regulation of mitochondria by germline proteostasis prevents protein aggregation in the soma of C. elegans. Sci Adv, 2021, 7(26): eabg3012.
doi: 10.1126/sciadv.abg3012 |
[71] |
Lan JF, Rollins JA, Zang X, Wu D, Zou LN, Wang Z, Ye C, Wu ZX, Kapahi P, Rogers AN, Chen D. Translational regulation of non-autonomous mitochondrial stress response promotes longevity. Cell Rep, 2019, 28(4): 1050-1062.e6.
doi: S2211-1247(19)30858-7 pmid: 31340143 |
[72] |
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB. FGF-21 as a novel metabolic regulator. J Clin Invest, 2005, 115(6): 1627-1635.
doi: 10.1172/JCI23606 pmid: 15902306 |
[73] |
Inagaki T, Dutchak P, Zhao GX, Ding XS, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA.Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab, 2007, 5(6): 415-425.
doi: 10.1016/j.cmet.2007.05.003 |
[74] |
Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, Kim SS, Kim DH, Hur KY, Kim HK, Ko T, Han J, Kim HL, Kim J, Back SH, Komatsu M, Chen H, Chan DC, Konishi M, Itoh N, Choi CS, Lee MS. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med, 2013, 19(1): 83-92.
doi: 10.1038/nm.3014 pmid: 23202295 |
[75] |
Zhang Y, Xie Y, Berglund ED, Coate KC, He TT, Katafuchi T, Xiao GH, Potthoff MJ, Wei W, Wan YH, Yu RT, Evans RM, Kliewer SA, Mangelsdorf DJ. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife, 2012, 1: e00065.
doi: 10.7554/eLife.00065 |
[76] |
Suomalainen A, Elo JM, Pietiläinen KH, Hakonen AH, Sevastianova K, Korpela M, Isohanni P, Marjavaara SK, Tyni T, Kiuru-Enari S, Pihko H, Darin N, Õunap K, Kluijtmans LA, Paetau A, Buzkova J, Bindoff LA, Annunen-Rasila J, Uusimaa J, Rissanen A, Yki-Järvinen H, Hirano M, Tulinius M, Smeitink J, Tyynismaa H. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol, 2011, 10(9): 806-818.
doi: 10.1016/S1474-4422(11)70155-7 pmid: 21820356 |
[77] |
Li JS, Cui JM, Tian Y. Neuron-periphery mitochondrial stress communication in aging and diseases. Life Med, 2022, 1(2): 168-178.
doi: 10.1093/lifemedi/lnac051 |
[78] |
Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, Babu MM. Pharmacogenomics of GPCR drug targets. Cell, 2018, 172(1-2): 41-54.e19.
doi: S0092-8674(17)31384-3 pmid: 29249361 |
[79] |
Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev, 2005, 85(4): 1159-1204.
pmid: 16183910 |
[1] | 何山, 赵健, 宋晓峰. N6-甲基腺苷修饰对女性生殖系统功能的影响[J]. 遗传, 2023, 45(6): 472-487. |
[2] | 商晓康, 张思萌, 倪军军. 组织蛋白酶B参与脑衰老及阿尔兹海默症发生发展研究进展[J]. 遗传, 2023, 45(3): 212-220. |
[3] | 黎嘉丽, 李瑾, 汪虎. 衰老相关的蛋白稳态失衡[J]. 遗传, 2022, 44(9): 733-744. |
[4] | 袁洁, 蔡时青. 衰老过程中行为和认知功能退化的调控机制研究[J]. 遗传, 2021, 43(6): 545-570. |
[5] | 刘紫妍, 高艾. 炎性衰老在血液系统疾病中的研究进展[J]. 遗传, 2021, 43(12): 1132-1141. |
[6] | 刘学文, 吴红梅, 白瑛, 曾群, 曹泽民, 吴秀山, 唐旻. 钾离子通道蛋白Shaker对果蝇心脏衰老的保护作用[J]. 遗传, 2021, 43(1): 94-99. |
[7] | 刘传明,丁利军,李佳音,戴建武,孙海翔. 衰老导致卵巢功能低下研究进展[J]. 遗传, 2019, 41(9): 816-826. |
[8] | 潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究[J]. 遗传, 2019, 41(10): 893-904. |
[9] | 阮清伟 俞卓伟 保志军 马永兴. 免疫基因多态性与衰老和增龄相关疾病关系[J]. 遗传, 2013, 35(7): 813-822. |
[10] | 刘强,李虹,陈怀红,王静. 热量限制通过HNF3γ下调NOX4表达来抑制内皮细胞的衰老[J]. 遗传, 2012, 34(5): 573-583. |
[11] | 罗茂,张志明,高健,曾兴,潘光堂. miR319在植物器官发育中的调控作用[J]. 遗传, 2011, 33(11): 1203-1211. |
[12] | 张秀峰,唐文如,罗瑛. 衰老或肿瘤: 端粒酶和p53的相互作用[J]. 遗传, 2009, 31(5): 451-456. |
[13] | 李虹,白小涓,刘强,王宁夫 . siRNA靶向沉默p22phox表达对内皮细胞衰老抑制作用的研究[J]. 遗传, 2008, 30(9): 1175-1181. |
[14] | 沈伟,李兰,吴晓洁,周艳荣,潘庆杰,陈宏,邓继先. 外源基因转染导致小鼠体细胞过快衰老 及p16表达水平变化[J]. 遗传, 2006, 28(11): 1383-1388. |
[15] | 吕占军,王秀芳,翟羽,宋淑霞. RNA促进小鼠重组染色质白蛋白基因DNaseⅠ消化敏感性[J]. 遗传, 2003, 25(1): 30-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: