[1] Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. Specific effects of microRNAs on the plant transcriptome. Dev Cell, 2005, 8(4): 517-527.[2] Garcia D. A miRacle in plant development: Role of microRNAs in cell differentiation and patterning. Semin Cell Dev Biol, 2008, 19(6): 586-595.[3] Zhang WX, Gao S, Zhou X, Chellappan P, Chen Z, Zhou XF, Zhang XM, Fromuth N, Coutino G, Coffey M, Jin HL. Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol, 2011, 75(1-2): 93-105.[4] Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta, 2008, 1779(11): 743-748.[5] Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 2006, 57(1): 19-53.[6] Rubio-Somoza I, Cuperus JT, Weigel D, Carrington JC. Regulation and functional specialization of small RNA-target nodes during plant development. Curr Opin Plant Biol, 2009, 12(5): 622-627.[7] Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2007, 2(2): e219.[8] Palatnik JF, Allen E, Wu XL, Schommer C, Schwab R, Carrington JC, Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003, 425(6955): 257-263.[9] Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev, 2002, 16(13): 1616-1626.[10] Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16(8): 200-2019.[11] Yin ZJ, Shen FF. Identification and characterization of conserved microRNAs and their target genes in wheat (Triticum aestivum). Genet Mol Res, 2010, 9(2): 1186-1196.[12] Luo YC, Zhou H, Li Y, Chen JY, Yang JH, Chen YQ, Qu LH. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett, 2006, 580(21): 5111-5116.[13] Zhang LF, Chia JM, Kumari S, Stein JC, Liu ZJ, Narechania A, Maher CA, Guill K, McMullen MD, Ware D. A genome-wide characterization of microRNA genes in maize. PLoS Genet, 2009, 5(11): e1000716.[14] Jagadeeswaran G, Zheng Y, Li YF, Shukla LI, Matts J, Hoyt P, Macmil SL, Wiley GB, Roe BA, Zhang WX, Sunkar R. Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. New Phytol, 2009, 184(1): 85-98.[15] 项安玲, 黄思齐, 杨志敏. 芸苔属 (Brassica) 植物中MicroRNA的生物信息学预测与分析. 中国生物化学与分子生物学报, 2008, 24(3): 244-256.[16] Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006, 34(1): 140-144.[17] 鲁玉柱, 封振, 边黎颖, 梁建生. 植物发育与microRNA. 西北植物学报, 2009, 29(5): 1066-1072.[18] Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol, 2008, 6(9): e230.[19] Nag A, King S, Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA, 2009, 106(52): 22534-22539.[20] Cubas P, Lauter N, Doebley J, Coen E. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J, 1999, 18(2): 215-222.[21] Aggarwal P, Das Gupta M, Joseph AP, Chatterjee N, Srinivasan N, Nath U. Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell, 2010, 22(4): 1174-1189.[22] Citerne HL, Luo D, Pennington RT, Coen E, Cronk QC. A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae. Plant Physiol, 2003, 131(3): 1042-1053.[23] Zhang WH, Kramer EM, Davis1 CC. Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. Proc Natl Acad Sci USA, 2010, 107(14): 6388-6393.[24] Bartlett ME, Specht CD. Changes in expression pattern of the teosinte branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. Am J Bot, 2011, 98(2): 227-243.[25] Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E. Control of organ asymmetry in flowers of Antirrhinum. Cell, 1999, 99(4): 367-376.[26] Martín-Trillo M, Cubas P. TCP genes: a family snapshot ten years later. Trends Plant Sci, 2010, 15(1): 31-39.[27] Crawford BCW, Nath U, Carpenter R, Coen ES. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiol, 2004, 135(1): 244-253.[28] Koyama T, Furutani M, Tasaka M, Ohme-Takagi M. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell, 2007, 19(2): 473-484.[29] Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington JC, Weigel D. Sequence and expression differences underlie functional specializetion of Arabidopsis microRNAs miR159 and miR319. Dev Cell, 2007, 13(1): 115-125.[30] 严松, 严长杰, 顾铭洪. 植物叶发育的分子机理. 遗传, 2008, 30(9): 1127-1135.[31] Efroni I, Eshed Y, Lifschitz E. Morphogenesis of simple and compound leaves: a critical review. Plant Cell, 2010, 22(4): 1019-1032.[32] Nath U, Crawford BCW, Carpenter R, Coen E. Genetic control of surface curvature. Science, 2003, 299(5611): 1404-1407.[33] Hay A, Barkoulas M, Tsiantis M. PINning down the connections: transcription factors and hormones in leaf morphogenesis. Curt Opin Plant Biol, 2004, 7(5): 575-581.[34] Warthmann N, Das S, Lanz C, Weigel D. Comparative analysis of the MIR319a microRNA locus in Arabidopsis and related Brassicaceae. Mol Biol Evol, 2008, 25(5): 892-902.[35] Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez JP, Blum E, Zamir D, Eshed Y. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet, 2007, 39(6): 787-791.[36] Martínez DE, Costa ML, Guiamet JJ. Senescence-associated degradation of chloroplast proteins inside and outside the organelle. Plant Biol, 2008, 10(S1): 15-22.[37] Noodén LD, Guiamét JJ, John I. Senescence mechanisms. Physiol Plant, 1997, 101(4): 746-753.[38] Zentgraf U, Jobst J, Kolb D, Rentsch D. Senescence-related gene expression profiles of rosette leaves of Arabidopsis thaliana: leaf age versus plant age. Plant Biol, 2004, 6(2): 178-183.[39] Gan SH. The hormonal regulation of senescence. Plant Hormones, 2010, E: 597-617.[40] Ueda J, Kato J. Isolation and identification of a senescence-promoting substance from worm word (Artemisia absinthium L.). Plant Physiol, 1980, 66: 246-249.[41] Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J, 2002, 31(1): 1-12.[42] Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA, 2000, 97(19): 10625-10630.[43] Miao Y, Zentgraf U. The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell, 2007, 19(3): 819-830.[44] Wellmer F, Riechmann JL. Gene networks controlling the initiation of flower development. Trends Genet, 2010, 26(12): 519-527.[45] Feng XZ, Zhao Z, Tian ZX, Xu SL, Luo YH, Cai ZG, Wang YM, Yang J, Wang Z, Weng L, Chen JH, Zheng LY, Guo XZ, Luo JH, Sato S, Tabata S, Ma W, Cao XL, Hu XH, Sun CR, Luo D. Control of petal shape and floral zygomorphy in Lotus japonicus. Proc Natl Acad Sci USA, 2006, 103(13): 4970-4975.[46] Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 2009, 138(4): 750-759.[47] Wang JW, Czech B, Weigel D. MiR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell, 2009, 138(4): 738-749.[48] Glazińska P, Zienkiewicz A, Wojciechowski W, Kopcewicz J. The putative miR172 target gene InAPETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil. J Plant Physiol, 2009, 166(16): 1801-1813.[49] Jung JH, Seo YH, Seo PJ, Reyesb JL, Yuna J, Chua NH, Parka CM. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell, 2007, 19(9): 2736-2748.[50] Williams L, Grigg SP, Xie MT, Christensen S, Fletcher JC. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development, 2005, 132(16): 3657-3668.[51] Jung JH, Park CM. MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta, 2007, 225(6): 1327-1338.[52] Ru P, Xu L, Ma H, Huang H. Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res, 2006, 16(5): 457-465.[53] Wu MF, Tian Q, Reed JW. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development, 2006, 133(21): 4211-4218.[54] Millar AA, Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell, 2005, 17(3): 705-721.[55] Allen RS, Li JY, Stahle MI, Dubroué A, Gubler F, Millar AA. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miRNA 159 family. Proc Natl Acad Sci USA, 2007, 104(41): 16371-16376.[56] Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell, 2006, 18(8): 2051-2065.[57] Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T. SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell, 2009, 21(1): 347-361. |