遗传 ›› 2023, Vol. 45 ›› Issue (12): 1087-1099.doi: 10.16288/j.yczz.23-170
收稿日期:
2023-08-07
修回日期:
2023-10-11
出版日期:
2023-12-20
发布日期:
2023-10-24
通讯作者:
桑庆,王磊
E-mail:zhouzhoustudy@163.com;sangqing@fudan.edu.cn;wangleiwanglei@fudan.edu.cn
作者简介:
周舟,博士,研究方向:女性生殖遗传学。E-mail: 基金资助:
Zhou Zhou1,2(), Qing Sang1(), Lei Wang1()
Received:
2023-08-07
Revised:
2023-10-11
Published:
2023-12-20
Online:
2023-10-24
Contact:
Qing Sang,Lei Wang
E-mail:zhouzhoustudy@163.com;sangqing@fudan.edu.cn;wangleiwanglei@fudan.edu.cn
Supported by:
摘要:
正常的卵子发生是人类成功繁育后代的关键步骤。女性胚胎发育时期,原始生殖细胞从有丝分裂转变为减数分裂,经过同源染色体配对和重组后,减数分裂被阻滞在减数第一次分裂前期的双线期。卵泡内卵母细胞的减数分裂阻滞的维持主要归因于胞质中高浓度的环磷酸腺苷。在月经周期中,卵泡刺激素和黄体生成素促进某些卵母细胞恢复减数分裂,完成排卵过程。卵母细胞减数分裂过程中发生任何缺陷都可能影响卵子发生,进而影响受精和胚胎发育过程。辅助生殖、高通量测序和分子生物学技术的快速发展,为人类认识减数分裂背后的精确分子机制以及卵母细胞成熟缺陷疾病的发病机制与诊疗提供新的思路和手段。本文主要介绍了近年来发现的调控卵子发生的生理和病理机制,涉及同源重组、减数分裂阻滞与恢复、母源mRNA降解、翻译后调节、透明带组装等过程,旨在增进相关领域研究人员对卵母细胞减数分裂的了解,并为进一步机制研究和疾病治疗提供理论基础。
周舟, 桑庆, 王磊. 人类卵母细胞减数分裂的生理和病理机制[J]. 遗传, 2023, 45(12): 1087-1099.
Zhou Zhou, Qing Sang, Lei Wang. Physiological and pathological mechanisms of oocyte meiosis[J]. Hereditas(Beijing), 2023, 45(12): 1087-1099.
表1
卵母细胞减数分裂缺陷的致病基因"
致病基因 | 遗传模式 | 患者表型 | 功能 | 参考文献 |
---|---|---|---|---|
TRIP13 | AR | 卵母细胞MI阻滞、合子分裂失败 | 调控同源染色体的分离 | [ |
REC114 | AR | 受精后多原核、早期胚胎停滞、反复葡萄胎、流产 | 调控同源重组的DSBs | [ |
MEI1 | AR | 早期胚胎停滞、反复葡萄胎、反复流产 | 调控同源重组的DSBs | [ |
PATL2 | AR | 卵母细胞GV阻滞、受精失败、早期胚胎停滞 | 介导翻译抑制途径 | [ |
PABPC1L | AR | 卵母细胞成熟障碍 | 介导翻译激活途径 | [ |
TBPL2 | AR | 卵母细胞成熟障碍、卵子退化和早期胚胎停滞 | 介导特定基因的转录 | [ |
ZP1 | AR | 卵子无透明带 | 组装为卵母细胞透明带 | [ |
ZP3 | AD | 卵子无透明带 | 组装为卵母细胞透明带 | [ |
ZP2 | AR | 卵子薄透明带、体外受精失败 | 组装为卵母细胞透明带 | [ |
ASTL | AR | 受精差和早期胚胎停滞 | 阻止多精受精 | [ |
TUBB8 | AD/AR/新发 | 卵母细胞成熟障碍、受精失败、早期胚胎停滞 | 构成卵母细胞纺锤体 | [ |
FBXO43 | AR | 早期胚胎停滞 | 维持卵母细胞MII阻滞 | [ |
CDC20 | AR | 卵母细胞MI阻滞、受精失败、早期胚胎停滞 | 维持卵母细胞MII阻滞 | [ |
MOS | AR | 早期胚胎停滞 | 维持卵母细胞MII阻滞 | [ |
WEE2 | AR | 受精失败 | 抑制MPF的活性 | [ |
BTG4 | AR | 合子分裂失败 | 介导母源mRNA的降解 | [ |
ZFP36L2 | AR | 早期胚胎停滞 | 介导母源mRNA的降解 | [ |
KPNA7 | AR | 早期胚胎停滞 | 介导核转运过程 | [ |
CHK1 | AD | 合子分裂失败 | 抑制MPF的活性 | [ |
TLE6 | AR | 受精失败或早期胚胎停滞 | 调控胞质晶格形成 | [ |
PADI6 | AR | 早期胚胎停滞 | 调控胞质晶格形成 | [ |
NLRP2 | AR | 早期胚胎停滞 | 调控胞质晶格形成 | [ |
NLRP5 | AR | 受精失败或早期胚胎停滞 | 调控胞质晶格形成 | [ |
KHDC3L | AR | 早期胚胎停滞或反复葡萄胎 | 调控胞质晶格形成 | [ |
[1] |
Sen A, Caiazza F. Oocyte maturation: a story of arrest and release. Front Biosci (Schol Ed), 2013, 5(2): 451-477.
doi: 10.2741/s383 pmid: 23277062 |
[2] |
He MN, Zhang T, Yang Y, Wang C. Mechanisms of oocyte maturation and related epigenetic regulation. Front Cell Dev Biol, 2021, 9: 654028.
doi: 10.3389/fcell.2021.654028 |
[3] |
Pei ZL, Deng K, Xu CJ, Zhang S. The molecular regulatory mechanisms of meiotic arrest and resumption in oocyte development and maturation. Reprod Biol Endocrinol, 2023, 21(1): 90.
doi: 10.1186/s12958-023-01143-0 |
[4] |
Sang Q, Zhou Z, Mu J, Wang L. Genetic factors as potential molecular markers of human oocyte and embryo quality. J Assist Reprod Genet, 2021, 38(5): 993-1002.
doi: 10.1007/s10815-021-02196-z |
[5] |
Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human menstrual cycle: a review. Hum Reprod Update, 2012, 18(1): 73-91.
doi: 10.1093/humupd/dmr039 pmid: 22068695 |
[6] |
Orisaka M, Miyazaki Y, Shirafuji A, Tamamura C, Tsuyoshi H, Tsang BK, Yoshida Y. The role of pituitary gonadotropins and intraovarian regulators in follicle development: a mini-review. Reprod Med Biol, 2021, 20(2): 169-175.
doi: 10.1002/rmb2.12371 pmid: 33850449 |
[7] |
Zhao Y, Feng HW, Zhang YH, Zhang JV, Wang XH, Liu DT, Wang TR, Li RHW, Ng EHY, Yeung WSB, Rodriguez-Wallberg KA, Liu K. Current understandings of core pathways for the activation of mammalian primordial follicles. Cells, 2021, 10(6): 1491.
doi: 10.3390/cells10061491 |
[8] |
Rienzi L, Balaban B, Ebner T, Mandelbaum J. The oocyte. Hum Reprod, 2012, 27(Suppl 1): i2-i21.
doi: 10.1093/humrep/des200 |
[9] |
Gougeon A. Human ovarian follicular development: from activation of resting follicles to preovulatory maturation. Ann Endocrinol (Paris), 2010, 71(3): 132-143.
doi: 10.1016/j.ando.2010.02.021 pmid: 20362973 |
[10] |
Suarez SS. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res, 2016, 363(1): 185-194.
doi: 10.1007/s00441-015-2244-2 pmid: 26183721 |
[11] |
Sanders JR, Swann K. Molecular triggers of egg activation at fertilization in mammals. Reproduction, 2016, 152(2): R41-R50.
doi: 10.1530/REP-16-0123 |
[12] | Ahmed TA, Ahmed SM, El-Gammal Z, Shouman S, Ahmed A, Mansour R, El-Badri N. Oocyte aging: the role of cellular and environmental factors and impact on female fertility. Adv Exp Med Biol, 2020, 1247(8): 109-123. |
[13] | Hunter N. Meiotic recombination: the essence of heredity. Cold Spring Harb Perspect Biol, 2015, 7(12): a016618. |
[14] |
de Massy B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet, 2013, 47: 563-599.
doi: 10.1146/annurev-genet-110711-155423 pmid: 24050176 |
[15] |
Powers NR, Parvanov ED, Baker CL, Walker M, Petkov PM, Paigen K. The meiotic recombination activator PRDM9 trimethylates both H3K36 and H3K4 at recombination hotspots in vivo. PLoS Genet, 2016, 12(6): e1006146.
doi: 10.1371/journal.pgen.1006146 |
[16] |
Stanzione M, Baumann M, Papanikos F, Dereli I, Lange J, Ramlal A, Tränkner D, Shibuya H, de Massy B, Watanabe Y, Jasin M, Keeney S, Tóth A. Meiotic DNA break formation requires the unsynapsed chromosome axis-binding protein IHO1 (CCDC36) in mice. Nat Cell Biol, 2016, 18(11): 1208-1220.
doi: 10.1038/ncb3417 pmid: 27723721 |
[17] |
Moreau S, Ferguson JR, Symington LS. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol Cell Biol, 1999, 19(1): 556-566.
doi: 10.1128/MCB.19.1.556 pmid: 9858579 |
[18] |
Cloud V, Chan YL, Grubb J, Budke B, Bishop DK. Rad 51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science, 2012, 337(6099): 1222-1225.
doi: 10.1126/science.1219379 |
[19] |
Adhikari D, Liu K. The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes. Mol Cell Endocrinol, 2014, 382(1): 480-487.
doi: S0303-7207(13)00321-3 pmid: 23916417 |
[20] |
Conti M, Hsieh M, Zamah AM, Oh JS. Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol Cell Endocrinol, 2012, 356(1-2): 65-73.
doi: 10.1016/j.mce.2011.11.002 pmid: 22101318 |
[21] |
Su YQ, Wigglesworth K, Pendola FL, O'Brien MJ, Eppig JJ. Mitogen-activated protein kinase activity in cumulus cells is essential for gonadotropin-induced oocyte meiotic resumption and cumulus expansion in the mouse. Endocrinology, 2002, 143(6): 2221-2232.
doi: 10.1210/endo.143.6.8845 |
[22] |
Sela-Abramovich S, Chorev E, Galiani D, Dekel N. Mitogen-activated protein kinase mediates luteinizing hormone-induced breakdown of communication and oocyte maturation in rat ovarian follicles. Endocrinology, 2005, 146(3): 1236-1244.
pmid: 15576461 |
[23] | Sha QQ, Dai XX, Dang YJ, Tang FC, Liu JP, Zhang YL, Fan HY. A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes. Development, 2017, 144(3): 452-463. |
[24] |
Wu JQ, Kornbluth S. Across the meiotic divide—CSF activity in the post-Emi2/XErp1 era. J Cell Sci, 2008, 121(Pt 21): 3509-3514.
doi: 10.1242/jcs.036855 |
[25] | Dupré A, Haccard O, Jessus C. Mos in the oocyte: how to use MAPK independently of growth factors and transcription to control meiotic divisions. J Signal Transduct, 2011, 2011: 350412. |
[26] |
Zhang YL, Liu XM, Ji SY, Sha QQ, Zhang J, Fan HY. ERK1/2 activities are dispensable for oocyte growth but are required for meiotic maturation and pronuclear formation in mouse. J Genet Genomics, 2015, 42(9): 477-485.
doi: 10.1016/j.jgg.2015.07.004 |
[27] |
Krauchunas AR, Wolfner MF. Molecular changes during egg activation. Curr Top Dev Biol, 2013, 102: 267-292.
doi: 10.1016/B978-0-12-416024-8.00010-6 pmid: 23287037 |
[28] |
Sang Q, Ray PF, Wang L. Understanding the genetics of human infertility. Science, 2023, 380(6641): 158-163.
doi: 10.1126/science.adf7760 pmid: 37053320 |
[29] |
Zhang ZH, Li B, Fu J, Li R, Diao FY, Li CH, Chen BB, Du J, Zhou Z, Mu J, Yan Z, Wu L, Liu S, Wang WJ, Zhao L, Dong J, He L, Liang XZ, Kuang YP, Sun XX, Sang Q, Wang L. Bi-allelic missense pathogenic variants in TRIP13 cause female infertility characterized by oocyte maturation arrest. Am J Hum Genet, 2020, 107(1): 15-23.
doi: S0002-9297(20)30148-8 pmid: 32473092 |
[30] |
Wang WJ, Dong J, Chen BB, Du J, Kuang YP, Sun XX, Fu J, Li B, Mu J, Zhang ZH, Zhou Z, Lin Z, Wu L, Yan Z, Mao XY, Li QL, He L, Wang L, Sang Q. Homozygous mutations in REC114 cause female infertility characterised by multiple pronuclei formation and early embryonic arrest. J Med Genet, 2020, 57(3): 187-194.
doi: 10.1136/jmedgenet-2019-106379 |
[31] |
Dong J, Zhang H, Mao XY, Zhu JH, Li D, Fu J, Hu JJ, Wu L, Chen BB, Sun YM, Mu J, Zhang ZH, Sun XX, Zhao L, Wang WJ, Wang WJ, Zhou Z, Zeng Y, Du J, Li QL, He L, Jin L, Kuang YP, Wang L, Sang Q. Novel biallelic mutations in MEI1: expanding the phenotypic spectrum to human embryonic arrest and recurrent implantation failure. Hum Reprod, 2021, 36(8): 2371-2381.
doi: 10.1093/humrep/deab118 |
[32] |
Christou-Kent M, Kherraf ZE, Amiri-Yekta A, Le Blévec E, Karaouzène T, Conne B, Escoffier J, Assou S, Guttin A, Lambert E, Martinez G, Boguenet M, Fourati Ben Mustapha S, Cedrin Durnerin I, Halouani L, Marrakchi O, Makni M, Latrous H, Kharouf M, Coutton C, Thierry- Mieg N, Nef S, Bottari SP, Zouari R, Issartel JP, Ray PF, Arnoult C. PATL2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Mol Med, 2018, 10(5): e8515.
doi: 10.15252/emmm.201708515 |
[33] |
Chen BB, Zhang ZH, Sun XX, Kuang YP, Mao XY, Wang XQ, Yan Z, Li B, Xu Y, Yu M, Fu J, Mu J, Zhou Z, Li QL, Jin L, He L, Sang Q, Wang L. Biallelic mutations in PATL2 cause female infertility characterized by oocyte maturation arrest. Am J Hum Genet, 2017, 101(4): 609-615.
doi: S0002-9297(17)30340-3 pmid: 28965849 |
[34] |
Wu L, Chen H, Li D, Song D, Chen BB, Yan Z, Lyu QF, Wang L, Kuang YP, Li B, Sang Q. Novel mutations in PATL2: expanding the mutational spectrum and corresponding phenotypic variability associated with female infertility. J Hum Genet, 2019, 64(5): 379-385.
doi: 10.1038/s10038-019-0568-6 pmid: 30765866 |
[35] |
Wang WJ, Guo J, Shi JZ, Li Q, Chen BB, Pan ZQ, Qu RG, Fu J, Shi R, Xue X, Mu J, Zhang ZH, Wu TY, Wang WJ, Zhao L, Li QL, He L, Sun XX, Sang Q, Lin G, Wang L. Bi-allelic pathogenic variants in PABPC1L cause oocyte maturation arrest and female infertility. EMBO Mol Med, 2023, 15(6): e17177.
doi: 10.15252/emmm.202217177 |
[36] |
Yang P, Chen TL, Wu KL, Hou ZZ, Zou Y, Li M, Zhang XZ, Xu JT, Zhao H. A homozygous variant in TBPL2 was identified in women with oocyte maturation defects and infertility. Hum Reprod, 2021, 36(7): 2011-2019.
doi: 10.1093/humrep/deab094 |
[37] |
Huang HL, Lv C, Zhao YC, Li W, He XM, Li P, Sha AG, Tian X, Papasian CJ, Deng HW, Lu GX, Xiao HM. Mutant ZP1 in familial infertility. N Engl J Med, 2014, 370(13): 1220-1226.
doi: 10.1056/NEJMoa1308851 |
[38] |
Chen TL, Bian YH, Liu XM, Zhao SG, Wu KL, Yan L, Li M, Yang ZL, Liu HB, Zhao H, Chen ZJ. A recurrent missense mutation in ZP3 causes empty follicle syndrome and female infertility. Am J Hum Genet, 2017, 101(3): 459-465.
doi: S0002-9297(17)30323-3 pmid: 28886344 |
[39] |
Dai C, Hu L, Gong F, Tan YQ, Cai SF, Zhang SP, Dai J, Lu CF, Chen J, Chen YZ, Lu GX, Du J, Lin G. ZP2 pathogenic variants cause in vitro fertilization failure and female infertility. Genet Med, 2019, 21(2): 431-440.
doi: 10.1038/s41436-018-0064-y |
[40] |
Maddirevula S, Coskun S, Al-Qahtani M, Aboyousef O, Alhassan S, Aldeery M, Alkuraya FS. ASTL is mutated in female infertility. Hum Genet, 2022, 141(1): 49-54.
doi: 10.1007/s00439-021-02388-8 |
[41] |
Chen BB, Li B, Li D, Yan Z, Mao XY, Xu Y, Mu J, Li QL, Jin L, He L, Kuang YP, Sang Q, Wang L. Novel mutations and structural deletions in TUBB8: expanding mutational and phenotypic spectrum of patients with arrest in oocyte maturation, fertilization or early embryonic development. Hum Reprod, 2017, 32(2): 457-464.
doi: 10.1093/humrep/dew322 |
[42] |
Feng RZ, Sang Q, Kuang YP, Sun XX, Yan Z, Zhang SZ, Shi JZ, Tian GL, Luchniak A, Fukuda Y, Li B, Yu M, Chen JL, Xu Y, Guo L, Qu RG, Wang XQ, Sun ZG, Liu M, Shi HJ, Wang HY, Feng Y, Shao RJ, Chai RJ, Li QL, Xing QH, Zhang R, Nogales E, Jin L, He L, Gupta ML, Cowan NJ, Wang L. Mutations in TUBB8 and human oocyte meiotic arrest. N Engl J Med, 2016, 374(3): 223-232.
doi: 10.1056/NEJMoa1510791 |
[43] |
Wang WJ, Wang WJ, Xu Y, Shi JZ, Fu J, Chen BB, Mu J, Zhang ZH, Zhao L, Lin J, Du J, Li QL, He L, Jin L, Sun XX, Wang L, Sang Q. FBXO 43 variants in patients with female infertility characterized by early embryonic arrest. Hum Reprod, 2021, 36(8): 2392-2402.
doi: 10.1093/humrep/deab131 |
[44] |
Zhao L, Xue SG, Yao ZY, Shi JZ, Chen BB, Wu L, Sun LH, Xu Y, Yan Z, Li B, Mao XY, Fu J, Zhang ZH, Mu J, Wang WJ, Du J, Liu S, Dong J, Wang WJ, Li Q, He L, Jin L, Liang XZ, Kuang YP, Sun XX, Wang L, Sang Q. Biallelic mutations in CDC20 cause female infertility characterized by abnormalities in oocyte maturation and early embryonic development. Protein Cell, 2020, 11(12): 921-927.
doi: 10.1007/s13238-020-00756-0 |
[45] |
Zhang YL, Zheng W, Ren PP, Hu HL, Tong XM, Zhang SP, Li X, Wang HC, Jiang JC, Jin JM, Yang WJ, Cao LR, He YL, Ma YR, Zhang YY, Gu YF, Hu L, Luo KL, Gong F, Lu GX, Lin G, Fan HY, Zhang SY. Biallelic mutations in MOS cause female infertility characterized by human early embryonic arrest and fragmentation. EMBO Mol Med, 2021, 13(12): e14887.
doi: 10.15252/emmm.202114887 |
[46] |
Zeng Y, Shi JZ, Xu SR, Shi R, Wu TH, Li HY, Xue X, Zhu YC, Chen BB, Sang Q, Wang L. Bi-allelic mutations in MOS cause female infertility characterized by preimplantation embryonic arrest. Hum Reprod, 2022, 37(3): 612-620.
doi: 10.1093/humrep/deab281 |
[47] |
Zhang YL, Zheng W, Ren PP, Jin JM, Hu ZH, Liu Q, Fan HY, Gong F, Lu GX, Lin G, Zhang SY, Tong XM. Biallelic variants in MOS cause large polar body in oocyte and human female infertility. Hum Reprod, 2022, 37(8): 1932-1944.
doi: 10.1093/humrep/deac120 |
[48] |
Sang Q, Li B, Kuang YP, Wang XQ, Zhang ZH, Chen BB, Wu L, Lyu QF, Fu YL, Yan Z, Mao XY, Xu Y, Mu J, Li QL, Jin L, He L, Wang L. Homozygous mutations in WEE2 cause fertilization failure and female infertility. Am J Hum Genet, 2018, 102(4): 649-657.
doi: S0002-9297(18)30060-0 pmid: 29606300 |
[49] |
Zheng W, Zhou Z, Sha QQ, Niu XL, Sun XX, Shi JZ, Zhao L, Zhang SP, Dai J, Cai SF, Meng F, Hu L, Gong F, Li XR, Fu J, Shi R, Lu GX, Chen BB, Fan HY, Wang L, Lin G, Sang Q. Homozygous mutations in BTG4 cause zygotic cleavage failure and female infertility. Am J Hum Genet, 2020, 107(1): 24-33.
doi: S0002-9297(20)30157-9 pmid: 32502391 |
[50] |
Zheng W, Sha QQ, Hu HL, Meng F, Zhou QW, Chen XQ, Zhang SP, Gu YF, Yan X, Zhao L, Zong YR, Hu L, Gong F, Lu GX, Fan HY, Lin G. Biallelic variants in ZFP36L2 cause female infertility characterised by recurrent preimplantation embryo arrest. J Med Genet, 2022, 59(9): 850-857.
doi: 10.1136/jmedgenet-2021-107933 |
[51] |
Wang WJ, Miyamoto Y, Chen BB, Shi JZ, Diao FY, Zheng W, Li Q, Yu L, Li L, Xu Y, Wu L, Mao XY, Fu J, Li B, Yan Z, Shi R, Xue X, Mu J, Zhang ZH, Wu TY, Zhao L, Wang WJ, Zhou Z, Dong J, Li QL, Jin L, He L, Sun XX, Lin G, Kuang YP, Wang L, Sang Q. Karyopherin α deficiency contributes to human preimplantation embryo arrest. J Clin Invest, 2023, 133(2): e159951.
doi: 10.1172/JCI159951 |
[52] |
Zhang HH, Chen TL, Wu KL, Hou ZZ, Zhao SG, Zhang CX, Gao Y, Gao M, Chen ZJ, Zhao H. Dominant mutations in CHK1 cause pronuclear fusion failure and zygote arrest that can be rescued by CHK1 inhibitor. Cell Res, 2021, 31(7): 814-817.
doi: 10.1038/s41422-021-00507-8 pmid: 33953335 |
[53] |
Alazami AM, Awad SM, Coskun S, Al-Hassan S, Hijazi H, Abdulwahab FM, Poizat C, Alkuraya FS. TLE6 mutation causes the earliest known human embryonic lethality. Genome Biol, 2015, 16: 240.
doi: 10.1186/s13059-015-0792-0 pmid: 26537248 |
[54] |
Xu Y, Shi YL, Fu J, Yu M, Feng RZ, Sang Q, Liang B, Chen BB, Qu RG, Li B, Yan Z, Mao XY, Kuang YP, Jin L, He L, Sun XX, Wang L. Mutations in PADI6 cause female infertility characterized by early embryonic arrest. Am J Hum Genet, 2016, 99(3): 744-752.
doi: S0002-9297(16)30228-2 pmid: 27545678 |
[55] |
Mu J, Wang WJ, Chen BB, Wu L, Li B, Mao XY, Zhang ZH, Fu J, Kuang YP, Sun XX, Li QL, Jin L, He L, Sang Q, Wang L. Mutations in NLRP2 and NLRP5 cause female infertility characterised by early embryonic arrest. J Med Genet, 2019, 56(7): 471-480.
doi: 10.1136/jmedgenet-2018-105936 |
[56] |
Zhang WD, Chen ZL, Zhang DF, Zhao B, Liu L, Xie ZY, Yao YG, Zheng P. KHDC3L mutation causes recurrent pregnancy loss by inducing genomic instability of human early embryonic cells. PLoS Biol, 2019, 17(10): e3000468.
doi: 10.1371/journal.pbio.3000468 |
[57] |
Jiang ZY, Fan HY. Five questions toward mRNA degradation in oocytes and preimplantation embryos: when, who, to whom, how, and why? Biol Reprod, 2022, 107(1): 62-75.
doi: 10.1093/biolre/ioac014 |
[58] |
Sha QQ, Zhang J, Fan HY. A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammals. Biol Reprod, 2019, 101(3): 579-590.
doi: 10.1093/biolre/ioz012 |
[59] |
Abou-Haila A, Bendahmane M, Tulsiani DR. Significance of egg's zona pellucida glycoproteins in sperm-egg interaction and fertilization. Minerva Ginecol, 2014, 66(4): 409-419.
pmid: 25020059 |
[60] | Yu C, Ji SY, Sha QQ, Dang YJ, Zhou JJ, Zhang YL, Liu Y, Wang ZW, Hu BQ, Sun QY, Sun SC, Tang FC, Fan HY. BTG 4 is a meiotic cell cycle-coupled maternal-zygotic- transition licensing factor in oocytes. Nat Struct Mol Biol, 2016, 23(5): 387-394. |
[61] |
Sha QQ, Yu JL, Guo JX, Dai XX, Jiang JC, Zhang YL, Yu C, Ji SY, Jiang Y, Zhang SY, Shen L, Ou XH, Fan HY. CNOT6L couples the selective degradation of maternal transcripts to meiotic cell cycle progression in mouse oocyte. Embo J, 2018, 37(24): e99333.
doi: 10.15252/embj.201899333 |
[62] |
Bebbere D, Albertini DF, Coticchio G, Borini A, Ledda S. The subcortical maternal complex: emerging roles and novel perspectives. Mol Hum Reprod, 2021, 27(7): gaab043.
doi: 10.1093/molehr/gaab043 |
[63] |
da Silveira JC, de Ávila ACFCM, Garrett HL, Bruemmer JE, Winger QA, Bouma GJ. Cell-secreted vesicles containing microRNAs as regulators of gamete maturation. J Endocrinol, 2018, 236(1): R15-R27.
doi: 10.1530/JOE-17-0200 |
[64] |
Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol, 2018, 19(7): 436-450.
doi: 10.1038/s41580-018-0008-z |
[65] | Xu Y, Su GH, Ma D, Xiao Y, Shao ZM, Jiang YZ. Technological advances in cancer immunity: from immunogenomics to single-cell analysis and artificial intelligence. Signal Transduct Target Ther, 2021, 6(1): 312. |
[1] | 吕香江, 郭静, 林戈. TRIP13基因新突变导致卵母细胞成熟阻滞为特征的女性不孕[J]. 遗传, 2023, 45(6): 514-525. |
[2] | 张楠, 张珏, 林戈. 哺乳动物卵母细胞的DNA损伤与修复研究进展[J]. 遗传, 2023, 45(5): 379-394. |
[3] | 李凯伦, 卢荆奥, 陈小辉, 张文清, 刘伟. 尿囊素促进破骨细胞缺陷斑马鱼骨折修复[J]. 遗传, 2023, 45(4): 341-353. |
[4] | 龚一鸣, 王翔宇, 贺小云, 刘玉芳, 余平, 储明星, 狄冉. 绵羊FecB突变对BMPR1B活性及BMP/SMAD通路的影响研究进展[J]. 遗传, 2023, 45(4): 295-305. |
[5] | 马捷, 黄露杰, 张巧霞, 朱艳, 钱露. 以A2型短指(趾)症为案例的医学遗传学PBL教学设计[J]. 遗传, 2023, 45(2): 176-183. |
[6] | 李璐阳, 刘孙强, 施云, 赵成程, 周红文, 郑旭琴. 一例葡萄糖激酶基因突变致低血糖症的诊疗及家系遗传分析[J]. 遗传, 2022, 44(9): 810-818. |
[7] | 张充, 魏子璇, 王敏, 陈瑶生, 何祖勇. 利用CRISPR/Cas9在人类黑色素瘤细胞中编辑MC1R与功能分析[J]. 遗传, 2022, 44(7): 581-590. |
[8] | 宋绍征, 何正义, 成勇, 于宝利, 张婷, 李丹. TALENs介导MSTN基因突变山羊的制备及性能分析[J]. 遗传, 2022, 44(6): 531-542. |
[9] | 郭雨萱, 严顺平, 王应祥. 重组酶RAD51和DMC1功能保守和分化研究进展[J]. 遗传, 2022, 44(5): 398-413. |
[10] | 王思琪, 陈阳, 罗宽宏, 史宁杰, 肖康丽, 崔振海, 曾天舒, 黎慧清. 一例SOX10基因缺失所致的Waardenburg综合征2型合并低促性腺激素性性腺功能减退症的诊断和基因检测分析[J]. 遗传, 2022, 44(12): 1158-1166. |
[11] | 宋青青, 张素素, 张振, 孙嘉, 杨锐, 李佶桐, 陈宏. 一例CYP11B基因突变导致11β-羟化酶缺乏症的诊疗和基因检测分析[J]. 遗传, 2022, 44(12): 1175-1182. |
[12] | 贾觉睿智, 肖诚, 刘艺文, 李冉, 张化冰, 于淼. 二例GCK基因突变致先天性高胰岛素性低血糖症的诊疗和基因检测分析[J]. 遗传, 2022, 44(11): 1056-1062. |
[13] | 肖诚, 刘洁颖, 杨春如, 于淼. LMNA基因突变相关脂肪萎缩综合征的研究进展[J]. 遗传, 2022, 44(10): 913-925. |
[14] | 李园园, 郭磊, 韩之明. NEK家族在细胞周期调控中的作用[J]. 遗传, 2021, 43(7): 642-653. |
[15] | 聂辉, 张译文, 李佳宁, 王楠楠, 徐澜. 减数分裂联会复合体异常与不孕不育相关性研究进展[J]. 遗传, 2021, 43(12): 1142-1148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: