遗传 ›› 2023, Vol. 45 ›› Issue (9): 793-800.doi: 10.16288/j.yczz.23-200
收稿日期:
2023-07-22
修回日期:
2023-09-06
出版日期:
2023-09-20
发布日期:
2023-09-12
通讯作者:
芦思佳
E-mail:563501645@qq.com;lusijia@gzhu.edu.cn
作者简介:
赖笔威,硕士研究生,专业方向:遗传学。E-mail: 基金资助:
Biwei Lai(), Lei Chen, Sijia Lu()
Received:
2023-07-22
Revised:
2023-09-06
Online:
2023-09-20
Published:
2023-09-12
Contact:
Sijia Lu
E-mail:563501645@qq.com;lusijia@gzhu.edu.cn
Supported by:
摘要:
开花是植物由营养阶段向生殖阶段转换的重要节点。大豆是光周期敏感的短日照作物,能够感受光周期的变化调控开花期和生育期,进而影响大豆产量及其他农艺性状,并决定大豆的光周期生态适应性。因此解析大豆光周期对开花期及生育期的调控机制是大豆研究的热点之一。本文介绍了大豆驯化过程中早花早熟的分子机制以及栽培大豆从起源地分别向高纬度和低纬度扩张的分子调控途径,综述了野生大豆光周期适应性的研究进展。分析光周期对大豆生活史和驯化的调控机制,将为优异大豆品种培育提供一定的参考价值。
赖笔威, 陈磊, 芦思佳. 大豆光周期适应性研究进展[J]. 遗传, 2023, 45(9): 793-800.
Biwei Lai, Lei Chen, Sijia Lu. The current status of photoperiod adaptability in soybean[J]. Hereditas(Beijing), 2023, 45(9): 793-800.
[1] |
Pajoro A, Biewers S, Dougali E, Leal Valentim F, Mendes MA, Porri A, Coupland G, Van de Peer Y, van Dijk ADJ, Colombo L, Davies B, Angenent GC. The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history. J Exp Bot, 2014, 65(17): 4731-4745.
doi: 10.1093/jxb/eru233 pmid: 24913630 |
[2] |
Blümel M, Dally N, Jung C. Flowering time regulation in crops—what did we learn from Arabidopsis? Curr Opin Biotech, 2015, 32: 121-129.
doi: 10.1016/j.copbio.2014.11.023 |
[3] | Wang SY, Wang ZX, Sui YY, Huang H, Song XB, Guo SH. Research progress of the molecular mechanism of photoperiod control rice flowering. North Rice, 2020, 50(3): 49-52. |
王诗宇, 王志兴, 隋亚云, 黄河, 宋晓波, 郭素华. 光周期调控水稻开花期的分子机制研究进展. 北方水稻, 2020, 50(3): 49-52. | |
[4] | Garner WW, Allard HA. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agri Res, 1920, 48(7): 415. |
[5] |
Hymowitz T. On the domestication of the soybean. Econ Bot, 1970, 24: 408-421.
doi: 10.1007/BF02860745 |
[6] | Thomas ECJ, Randall LN, Clay HS, Cui ZL. Genetic diversity in soybean. In: Richard MS, James EH, Richard FW, Randy CS, Production and Uses. eds. Soybeans: Improvement, American Society of Agronomy-Crop Science Society of America-Soil Science Society of America, 2004, 16: 303-416. |
[7] |
Lu SJ, Zhao XH, Hu YL, Liu SL, Nan HY, Li XM, Fang C, Cao D, Shi XY, Kong LP, Su T, Zhang FG, Li SC, Wang Z, Yuan XH, Cober ER, Weller JL, Liu BH, Hou XL, Tian ZX, Kong FJ. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet, 2017, 49(5): 773-779.
doi: 10.1038/ng.3819 pmid: 28319089 |
[8] |
Cao D, Takeshima R, Zhao C, Liu BH, Jun A, Kong FJ. Molecular mechanisms of flowering under long days and stem growth habit in soybean. J Exp Bot, 2017, 68(8): 1873-1884.
doi: 10.1093/jxb/erw394 pmid: 28338712 |
[9] |
Lin XY, Fang C, Liu BH, Kong FJ. Natural variation and artificial selection of photoperiodic flowering genes and their applications in crop adaptation. aBIOTECH, 2021, 2(2): 156-169.
doi: 10.1007/s42994-021-00039-0 pmid: 36304754 |
[10] |
Destro D, Carpentieri-Pipolo V, Kiihl RADS, Almeida LAD. Photoperiodism and genetic control of the long juvenile period in soybean: a review. CBAB, 2001, 1(1): 72-92.
doi: 10.13082/1984-7033 |
[11] | Darwin C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Br Foreign Med Chir Rev, 1860, 25(50): 367-404. |
[12] |
Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell, 2006, 127(7): 1309-1321.
doi: 10.1016/j.cell.2006.12.006 pmid: 17190597 |
[13] |
Olsen KM, Wendel JF. A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol, 2013, 64: 47-70.
doi: 10.1146/annurev-arplant-050312-120048 pmid: 23451788 |
[14] |
Meyer RS, Purugganan MD. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet, 2013, 14(12): 840-852.
doi: 10.1038/nrg3605 pmid: 24240513 |
[15] |
Lu SJ, Dong LD, Fang C, Liu SL, Kong LP, Cheng Q, Chen LY, Su T, Nan HY, Zhang D, Zhang L, Wang ZJ, Yang YQ, Yu DY, Liu XL, Yang QY, Lin XY, Tang Y, Zhao XH, Yang XQ, Tian CG, Xie QG, Li X, Yuan XH, Tian ZX, Liu BH, Weller JL, Kong FJ. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet, 2020, 52(4): 428-436.
doi: 10.1038/s41588-020-0604-7 |
[16] | Xia ZJ, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lü SX, Wu HY, Tabata S, Harada K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA, 2012, 109(32): E2155-E2164. |
[17] |
Watanabe S, Xia ZJ, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011, 188(2): 395-407.
doi: 10.1534/genetics.110.125062 pmid: 21406680 |
[18] |
Watanabe S, Hideshima R, Xia ZJ, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 2009, 182(4): 1251-1262.
doi: 10.1534/genetics.108.098772 pmid: 19474204 |
[19] |
Liu BH, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome a gene. Genetics, 2008, 180(2): 995-1007.
doi: 10.1534/genetics.108.092742 |
[20] |
Dissanayaka A, Rodriguez TO, Di SK, Yan F, Githiri SM, Rodas FR, Abe J, Takahashi R. Quantitative trait locus mapping of soybean maturity gene E5. Breeding Sci, 2016, 66(3): 407-415.
doi: 10.1270/jsbbs.15160 pmid: 27436951 |
[21] |
Bonato ER, Vello NA. E-6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol, 1999, 22(2): 229-232.
doi: 10.1590/S1415-47571999000200016 |
[22] |
Cober ER, Voldeng HD. Low R: FR light quality delays flowering of E7E7 soybean lines. Crop Sci, 2001, 41(6): 1823-1826.
doi: 10.2135/cropsci2001.1823 |
[23] |
Cober ER, Molnar SJ, Charette M, Voldeng HD. A new locus for early maturity in soybean. Crop Sci, 2010, 50(2): 524-527.
doi: 10.2135/cropsci2009.04.0174 |
[24] |
Kong FJ, Liu BH, Xia ZJ, Sato SS, Kim BM, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154(3): 1220-1231.
doi: 10.1104/pp.110.160796 |
[25] |
Zhai H, Lü SX, Liang S, Wu HY, Zhang XZ, Liu BH, Kong FJ, Yuan XH, Li J, Xia ZJ. GmFT4, a Homolog of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS One, 2014, 9(2): e89030.
doi: 10.1371/journal.pone.0089030 |
[26] |
Wang FF, Nan HY, Chen LY, Fang C, Zhang HY, Su T, Li SC, Cheng Q, Dong LD, Liu BH, Kong FJ, Lu SJ. A new dominant locus, E11, controls early flowering time and maturity in soybean. Mol Breeding, 2019, 39(5): 70.
doi: 10.1007/s11032-019-0978-3 |
[27] |
Johnson E, Bradley M, Harberd NP, Whitelam GC. Photoresponses of light-grown phyA mutants of Arabidopsis (phytochrome A is required for the perception of daylength extensions). Plant Physiol, 1994, 105(1): 141-149.
pmid: 12232194 |
[28] |
Lu SJ, Li Y, Wang JL, Srinives P, Nan HY, Cao D, Wang YP, Li JL, Li XM, Fang C, Shi XY, Yuan XH, Watanabe S, Feng XZ, Liu BH, Abe J, Kong FJ. QTL mapping for flowering time in different latitude in soybean. Euphytica, 2015, 206(3): 725-736.
doi: 10.1007/s10681-015-1501-5 |
[29] |
Cober ER, Tanner JW, Voldeng HD. Genetic control of photoperiod response in early-maturing, near-isogenic soybean lines. Crop Science, 1996, 36(3): 601-605.
doi: 10.2135/cropsci1996.0011183X003600030013x |
[30] |
Cober ER, Tanner JW, Voldeng HD. Soybean photoperiod- sensitivity loci respond differentially to light quality. Crop Sci, 1996, 36(3): 606-610.
doi: 10.2135/cropsci1996.0011183X003600030014x |
[31] |
Xu ML, Xu ZH, Liu BH, Kong FJ, Tsubokura Y, Watanabe S, Xia ZJ, Harada K, Kanazawa A, Yamada T, Abe J. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol, 2013, 13: 91.
doi: 10.1186/1471-2229-13-91 |
[32] |
Jiang BJ, Nan HY, Gao YF, Tang LL, Yue YL, Lu SJ, Ma LM, Cao D, Sun S, Wang JL, Wu CX, Yuan XH, Hou WS, Kong FJ, Han TF, Liu BH. Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS One, 2014, 9(8): e106042.
doi: 10.1371/journal.pone.0106042 |
[33] |
Xu ML, Yamagishi N, Zhao C, Takeshima R, Kasai M, Watanabe S, Kanazawa A, Yoshikawa N, Liu BH, Yamada T, Abe J. The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS T orthologs. Plant Physiol, 2015, 168(4): 1735-1746.
doi: 10.1104/pp.15.00763 |
[34] |
Zhu JH, Takeshima R, Harigai K, Xu ML, Kong FJ, Liu BH, Kanazawa A, Yamada T, Abe J. Loss of function of the E1-Like-b gene associates with early flowering under long-day conditions in soybean. Front Plant Sci, 2019, 9: 1867.
doi: 10.3389/fpls.2018.01867 |
[35] |
Dong LD, Li SC, Wang LS, Su T, Zhang CB, Bi YD, Lai YC, Kong LP, Wang F, Pei XX, Li HY, Hou ZH, Du HP, Du H, Li T, Cheng Q, Fang C, Kong FJ, Liu BH. The genetic basis of high-latitude adaptation in wild soybean. Curr Biol, 2023, 33(2): 252-262.e4.
doi: 10.1016/j.cub.2022.11.061 |
[36] | Lin XY, Dong LD, Tang Y, Li HY, Cheng Q, Li H, Zhang T, Ma LX, Xiang HL, Chen LN, Nan HY, Fang C, Lu SJ, Li JG, Liu BH, Kong FJ. Novel and multifaceted regulations of photoperiodic flowering by phytochrome a in soybean. Proc Natl Acad Sci USA, 2022, 119(41): e2208708119. |
[37] |
Li HY, Du HP, He ML, Wang JH, Wang F, Yuan WJ, Huang ZR, Cheng Q, Gou CJ, Chen Z, Liu BH, Kong FJ, Fang C, Zhao XH, Yu DY. Natural variation of FKF1 controls flowering and adaptation during soybean domestication and improvement. New Phytol, 2023, 238(4): 1671-1684.
doi: 10.1111/nph.v238.4 |
[38] |
Dong LD, Cheng Q, Fang C, Kong LP, Yang H, Hou ZH, Li YL, Nan HY, Zhang YH, Chen QS, Zhang CB, Kou K, Su T, Wang LS, Li SC, Li HY, Lin XY, Tang Y, Zhao XH, Lu SJ, Liu BH, Kong FJ. Parallel selection of distinct Tof5 alleles drove the adaptation of cultivated and wild soybean to high latitudes. Mol Plant, 2022, 15(2): 308-321.
doi: 10.1016/j.molp.2021.10.004 |
[39] |
Chen L, Cai YP, Qu MN, Wang LW, Sun HB, Jiang BJ, Wu TT, Liu LP, Sun S, Wu CX, Yao WW, Yuan S, Han TF, Hou WS.Soybean adaption to high-latitude regions is associated with natural variations of GmFT2b, an ortholog of FLOWERING LOCUS T. Plant Cell Environ, 2020, 43(4): 934-944.
doi: 10.1111/pce.v43.4 |
[40] |
Yuan S, Wang YN, Wang JY, Zhang CL, Zhang LX, Jiang BJ, Wu TT, Chen L, Xu X, Cai YP, Sun S, Chen FL, Song WW, Wu CX, Hou WS, Yu LJ, Han TF. GMFT3A fine-tunes flowering time and improves adaptation of soybean to higher latitudes. Front Plant Sci, 2022, 13: 929747.
doi: 10.3389/fpls.2022.929747 |
[41] |
Liu W, Jiang BJ, Ma LM, Zhang SW, Zhai H, Xu X, Hou WS, Xia ZJ, Wu CX, Sun S, Wu TT, Chen L, Han TF. Functional diversification of flowering locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytol, 2018, 217(3): 1335-1345.
doi: 10.1111/nph.2018.217.issue-3 |
[42] | Neumaier N, James AT. Exploiting the long-juvenile trait to improve adaptation of soybeans to the tropics. ACIAR Food Legume Newsletter, 1993, 18: 12-14. |
[43] |
Carpentleri-Pípolo V, de Almeida LA, Kiihl RAD. Inheritance of a long juvenile period under short-day conditions in soybean. Genet Mol Biol, 2002, 25(4): 463-469.
doi: 10.1590/S1415-47572002000400016 |
[44] |
Ray JD, Hinson K, Mankono JEB, Malo MF. Genetic control of a long-juvenile trait in soybean. Crop Sci, 1995, 35(4): 1001-1006
doi: 10.2135/cropsci1995.0011183X003500040012x |
[45] |
Fang C, Liu J, Zhang T, Su T, Li SC, Cheng Q, Kong LP, Li XM, Bu TT, Li HY, Dong LD, Lu SJ, Kong FJ, Liu BH. A recent retrotransposon insertion of J caused E6 locus facilitating soybean adaptation into low latitude. J Integr Plant Biol, 2021, 63(6): 995-1003.
doi: 10.1111/jipb.v63.6 |
[46] |
Kamioka M, Takao S, Suzuki T, Taki K, Higashiyama T, Kinoshita T, Nakamichi N. Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock. Plant Cell, 2016, 28(3): 696-711.
doi: 10.1105/tpc.15.00737 |
[47] |
Sanchez SE, Kay SA. The plant circadian clock: from a simple timekeeper to a complex developmental manager. Cold Spring Harb Perspect Biol, 2016, 8(12): a027748.
doi: 10.1101/cshperspect.a027748 |
[48] | Bu TT, Lu SJ, Wang K, Dong LD, Li SL, Xie QG, Xu XD, Cheng Q, Chen LY, Fang C, Li HY, Liu BH, Weller JL, Kong FJ. A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation. Proc Natl Acad Sci USA, 2021, 118(8): e2010241118. |
[49] | Qin C, Li HY, Zhang SR, Lin XY, Jia ZW, Zhao F, Wei XZ, Jiao YC, Li Z, Niu ZY, Zhou YG, Li XJ, Li HY, Zhao T, Liu J, Li HY, Lu YP, Kong FJ, Liu B. GmEID1 modulates light signaling through the evening complex to control flowering time and yield in soybean. Proc Natl Acad Sci USA, 2023, 120(15): e2212468120. |
[50] |
Dong LD, Fang C, Cheng Q, Su T, Kou K, Kong LP, Zhang CB, Li HY, Hou ZH, Zhang YH, Chen LY, Yue L, Wang LS, Wang K, Li YL, Gan ZR, Yuan XH, Weller JL, Lu SJ, Kong FJ, Liu BH. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nat Commun, 2021, 12(1): 5445.
doi: 10.1038/s41467-021-25800-3 pmid: 34521854 |
[51] |
Li XM, Fang C, Yang YQ, Lv TX, Su T, Chen LY, Nan HY, Li SC, Zhao XH, Lu SJ, Dong LD, Cheng Q, Tang Y, Xu ML, Abe J, Hou XL, Weller JL, Kong FJ, Liu BH. Overcoming the genetic compensation response of soybean florigens to improve adaptation and yield at low latitudes. Curr Biol, 2021, 31(17): 3755-3767.
doi: 10.1016/j.cub.2021.06.037 |
[52] |
Wang F, Li SC, Kong FJ, Lin XY, Lu SJ. Altered regulation of flowering expands growth ranges and maximizes yields in major crops. Front Plant Sci, 2023, 14: 1094411.
doi: 10.3389/fpls.2023.1094411 |
[53] | Wong ACS, Hecht VFG, Picard K, Diwadkar P, Laurie RE, Wen JQ, Mysore K, Macknight RC, Weller JL. Isolation and functional analysis of CONSTANS-LIKE genes suggests that a central role for CONSTANS in flowering time control is not evolutionarily conserved in Medicago truncatula. Front Plant Sci, 2014, 5: 486. |
[1] | 田璐妍, 黄小珍. 植物开花调控中蛋白质相分离机制在从头驯化中的应用价值[J]. 遗传, 2023, 45(9): 754-764. |
[2] | 廉小平, 黄光福, 张玉娇, 张静, 胡凤益, 张石来. 长雄野生稻有利基因的发掘与利用[J]. 遗传, 2023, 45(9): 765-780. |
[3] | 简六梅, 肖英杰, 严建兵. 从头驯化:作物品种设计与培育的新方向[J]. 遗传, 2023, 45(9): 741-753. |
[4] | 付孟, 李艳. 家马的起源历史与品种驯化特征[J]. 遗传, 2022, 44(3): 216-229. |
[5] | 文子龙, 赵毅强. 群体遗传学下动物驯化研究进展[J]. 遗传, 2021, 43(3): 226-239. |
[6] | 杨新萍,于媛,许操. 重新设计与快速驯化创造新型作物[J]. 遗传, 2019, 41(9): 827-835. |
[7] | 林春,刘正杰,董玉梅,MichelVales,毛自朝. 藜麦的驯化栽培与遗传育种[J]. 遗传, 2019, 41(11): 1009-1022. |
[8] | 郭文雅,崔艳梅,王婷婷,喻德跃,黄方. 野生大豆花发育相关基因GsLFY的功能研究[J]. 遗传, 2017, 39(1): 56-65. |
[9] | 孔德艳, 陈守俊, 周立国, 高欢, 罗利军, 刘灶长. 水稻开花光周期调控相关基因研究进展[J]. 遗传, 2016, 38(6): 532-542. |
[10] | 潘章源, 贺小云, 王翔宇, 郭晓飞, 曹晓涵, 胡文萍, 狄冉, 刘秋月, 储明星. 家养动物选择信号研究进展[J]. 遗传, 2016, 38(12): 1069-1080. |
[11] | 朱丹,柏锡,朱延明,才华,李勇,纪巍,陈超,安琳,朱毅. 野生大豆盐碱胁迫相关GsTIFY11b的克隆与功能分析[J]. 遗传, 2012, 34(2): 230-239. |
[12] | 区树俊,汪鸿儒,储成才. 2012年第11期《遗传》封面说明[J]. 遗传, 2012, 34(11): 1389-1389. |
[13] | 区树俊,汪鸿儒,储成才. 亚洲栽培稻主要驯化性状研究进展[J]. 遗传, 2012, 34(11): 1379-1389. |
[14] | 杨宇晖,梁旭方,方荣,彭敏燕,黄志东. 鳜脂蛋白脂酶基因SNP及其与食性驯化相关性分析[J]. 遗传, 2011, 33(9): 996-1002. |
[15] | 李英慧,袁翠平,张辰,李伟,南海洋,常汝镇,邱丽娟. 基于大豆胞囊线虫病抗性候选基因的SNP位点遗传变异分析[J]. 遗传, 2009, 31(12): 1259-1264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: