遗传

• 研究报告 •    

多年生水稻分子图谱的构建与分析

彭廷燊1,陆久焱1,严雨欣1,谭霖1,南文斌1,秦小健1,李明1,龚俊义2,梁永书1   

  1. 1.重庆师范大学,植物环境适应分子生物学重庆市重点实验室,重庆 401331

    2.中国水稻研究所,浙江310006
  • 收稿日期:2024-12-03 修回日期:2025-01-11 出版日期:2025-04-08 发布日期:2025-04-08
  • 基金资助:
    西南作物基因资源发掘与利用国家重点实验室“生物育种”揭榜挂帅重点项目(编号:SKL-KF202226),重庆市自然科学基金面上项目(编号:Cstc2021jcyj-msxmX0007)和水稻生物育种国家重点实验室开放课题(编号:20190202)资助

Construction and analysis of molecular genetic map of perennial Chinese rice

Tingshen Peng1, Jiuyan Lu1, Yuxin Yan1, Lin Tan1, Wenbin Nan1, Xiaojian Qin1, Ming Li1, Junyi Gong2, Yongshu Liang1   

  1. 1. Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China

    2. National Rice Research Institute, Hangzhou 310006, China
  • Received:2024-12-03 Revised:2025-01-11 Published:2025-04-08 Online:2025-04-08

摘要: 培育多年生水稻新品种,实现“一种(年)多收”的增产增收种植模式是保障国家粮食安全最经济实惠的策略。本文对多年生水稻的分子图谱的构建与分析,阐明多年生水稻的微卫星位点的遗传规律,为育种创新利用提供理论依据。以2份多年生水稻构建2个半同胞(“黄糯2号/协青早B”和“长白7号/协青早B”)F2群体为材料,绘制了两张分子图谱,分别包含108个和109个SSR标记,覆盖基因组全长2036.10cM和1878.23cM,标记间平均图距分别18.85 cM和17.23 cM。卡方测验(χ2)发现,两群体基因型卡方值分别为134.85和291.02,极显著偏向父本“协青早B”。两图谱各连锁群基因型卡方值介于2.23~175.67和4.53~191.52,其中,“黄糯2号”图谱第1、2、3、4、6、8、9、10和12连锁群基因型偏离孟德尔比,“长白7号”图谱第1、2、3、5、6、7、9、11和12连锁群基因型偏离孟德尔分离比。“黄糯2号”群体有38个单株基因型显著或极显著偏离孟德尔分离比,“长白7号”群体有47个单株基因型显著或极显著偏离孟德尔分离比。“黄糯2号”图谱有32个标记显著或极显著偏离孟德尔分离比,成簇分布在第3、4和6连锁群;“长白7号”有44个标记偏离孟德尔分离,成簇分布在第3、5、6、7、9和12连锁群。本研究将为多年生水稻有利基因挖掘和分子育种奠定基础。

关键词: 多年生水稻, SSR标记, 分子图谱, 基因型

Abstract: To develop perennial rice varieties and realize one planting (year) more harvest planting pattern of increasing yield and farmer’s income is one of the most cost-effective strategy involved in safeguarding China’s grain supply. In this study, construction and analysis of molecular maps of perennial rice was performed to elucidate the genetic laws of microsatellite loci in perennial Chinese rice, two half-sib F2 populations derived from two perennial Chinese japonica rice (HN2# and CB7#) crossed to the annual indica rice XieqingzaoB (XQZB) were developed to construct two half-sib linkage maps. We established linkage map lengths of 2,036.10 cM and 1,878.23 cM with average genetic distance of 18.85 cM and 17.23 cM by using 108 and 109 SSR markers in both HN2# and CB7# map, respectively. Chi-square value (χ2) for genotypes in the F2 populations of both HN2# and CB7# were 134.85 and 291.02, respectively, and exhibited displayed extreme significant bias towards XQZB. χ2 value for genotype on each linkage group of both HN2# and CB7# map ranged from 2.23 to 175.67, from 4.53 to 191.52, respectively. Genotypes on linkage groups of both the 1st, 2nd, 3rd, 4th, 6th, 8th, 9th, 10th, and 12th in HN2# map and 1st, 2nd, 3rd, 5th, 6th, 7th, 9th, 11th, and 12th in CB7# map deviated from the Mendelian ratio. There 38 F2 individual in HN2# and 47 F2 individual in CB7# population deviated from the Mendelian ratio, respectively. Altogether 32 markers showed segregation distortion (29.63%) and clustered on the 3rd, 4th and 6th of linkage in HN2# map, there 44 markers showed segregation distortion (40.37%) and clustered on the 3rd, 5th, 6th, 7th, 9th, and 12th of linkage in CB7# map. Overall, this study lays a good foundation for the mining of beneficial genes and the innovation and utilization of perennial Chinese rice genetic resources.

Key words: Perennial Chinese rice, Simple sequence repeat, Molecular map, Genotype