[1] Lang AE, Lozano AM. Parkinson’s disease. First of two parts. N Engl J Med, 1998, 339(15): 1044–1053.
[2] Papapetropoulos S, Adi N, Ellul J, Argyriou AA, Chroni E. A prospective study of familial versus sporadic Parkin- son's disease. Neurodegener Dis, 2007, 4(6): 424–427.
[3] Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson's disease. Annu Rev Neurosci, 2005, 28: 57–87.
[4] Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet, 2006, 7(4): 306–318.
[5] van der Putten H, Wiederhold KH, Probst A, Barbieri S, Mistl C, Danner S, Kauffmann S, Hofele K, Spooren WP, Ruegg MA, Lin S, Caroni P, Sommer B, Tolnay M, Bilbe G. Neuropathology in mice expressing human alpha-synu clein. J Neurosci, 2000, 20(16): 6021–6029.
[6] Feany MB, Bender WW. A Drosophila model of Parkin- son's disease. Nature, 2000, 404(6776): 394–398.
[7] Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, Tsunoda M, Mitani S, Iwatsubo T. Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem, 2006, 281 (1): 334–340.
[8] Vartiainen S, Pehkonen P, Lakso M, Nass R, Wong G. Identification of gene expression changes in transgenic C. elegans overexpressing human alpha-synuclein. Neurobiol Dis, 2006, 22(3): 477–486.
[9] Kuwahara T, Koyama A, Koyama S, Yoshina S, Ren CH, Kato T, Mitani S, Iwatsubo T. A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in alpha-synuclein transgenic C. elegans. Hum Mol Genet, 2008, 17(19): 2997–3009.
[10] MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, Abeliovich A. The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron, 2006, 52(4): 587–593.
[11] Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ, Kim CH, Han BS, Tong Y, Shen J, Hatano T, Hattori N, Kim KS, Chang S, Seol W. LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res, 2008, 314(10): 2055–2065.
[12] Gloeckner CJ, Schumacher A, Boldt K, Ueffing M. The Parkinson disease-associated protein kinase LRRK2 ex- hibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J Neurochem, 2009, 109(4): 959–968.
[13] Milosevic J, Schwarz SC, Ogunlade V, Meyer AK, Storch A, Schwarz J. Emerging role of LRRK2 in human neural progenitor cell cycle progression, survival and differentiation. Mol Neurodegener, 2009, 4: 25.
[14] Gillardon F. Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability-a point of convergence in Parkinsonian neurode- generation? J Neurochem, 2009, 110(5): 1514–1522.
[15] Alegre-Abarrategui J, Christian H, Lufino M, Mutihac R, Lourenco Venda L, Ansorge O, Wade-Martins R. LRRK2 regulates autophagic activity and localises to specific mem- brane microdomains in a novel human genomic reporter cel lular model. Hum Mol Genet, 2009, 18(21): 4022–4034.
[16] Qing H, Wong W, McGeer EG, McGeer PL. Lrrk2 phos- phorylates alpha synuclein at serine 129: Parkinson dis- ease implications. Biochem Biophys Res Commun, 2009, 387(1): 149–152.
[17] Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V, Zhou C, Geghman K, Bogdanov M, Przedborski S, Beal MF, Burke RE, Li C. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkin- son's disease. Nat Neurosci, 2009, 12(7): 826–828.
[18] Liu Z, Wang X, Yu Y, Li X, Wang T, Jiang H, Ren Q, Jiao Y, Sawa A, Moran T, Ross CA, Montell C, Smith WW. A Drosophila model for LRRK2-linked Parkinsonism. Proc Natl Acad Sci USA, 2008, 105(7): 2693–2698.
[19] Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M, Chen F, Gu Y, Hasegawa H, Salehi-Rad S, Wang L, Ro- gaeva |