遗传 ›› 2025, Vol. 47 ›› Issue (10): 1078-1098.doi: 10.16288/j.yczz.yczz.24-371
收稿日期:
2025-04-11
修回日期:
2025-06-11
出版日期:
2025-10-20
发布日期:
2025-10-17
通讯作者:
丁梅,博士,研究员,研究方向:神经系统发育的分子机制。E-mail: mding@genetics.ac.cn作者简介:
陈佳强,博士研究生,专业方向:神经生物学。E-mail: jiaqiang.chen@genetics.ac.cn
基金资助:
Jiaqiang Chen1,2(), Mei Ding1,2(
)
Received:
2025-04-11
Revised:
2025-06-11
Published:
2025-10-20
Online:
2025-10-17
Supported by:
摘要:
细胞外囊泡(extracellular vesicles)是细胞释放到细胞外环境的膜包被结构,包含蛋白质、核酸、脂质等多种生物分子。细胞外囊泡来源广泛、种类繁多,且具有高度异质性。它们参与细胞间物质转运,调控细胞间通讯,并在细胞增殖、凋亡、迁移等多种生物学过程中发挥重要作用。本文综述了细胞外囊泡的分离与鉴定、生物发生机制及其命运等方面的研究进展,以期为该领域的深入研究提供参考。
陈佳强, 丁梅. 细胞外囊泡的研究进展[J]. 遗传, 2025, 47(10): 1078-1098.
Jiaqiang Chen, Mei Ding. Progress on extracellular vesicles[J]. Hereditas(Beijing), 2025, 47(10): 1078-1098.
[1] |
Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem, 1946, 166(1): 189-197.
pmid: 20273687 |
[2] |
Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol, 1967, 13(3): 269-288.
pmid: 6025241 |
[3] | Nunez EA, Wallis J, Gershon MD. Secretory processes in follicular cells of the bat thyroid. III. The occurrence of extracellular vesicles and colloid droplets during arousal from hibernation. Am J Anat, 1974, 141(2): 179-201. |
[4] |
Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell, 1983, 33(3): 967-978.
pmid: 6307529 |
[5] |
Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem, 1987, 262(19): 9412-9420.
pmid: 3597417 |
[6] |
Sun CN. Lattice structures and osmiophilic bodies in the developing respiratory tissue of rats. J Ultrastruct Res, 1966, 15(3): 380-388.
pmid: 5943006 |
[7] |
Anderson HC. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol, 1969, 41(1): 59-72.
pmid: 5775794 |
[8] |
Benz EW, Moses HL. Small, virus-like particles detected in bovine sera by electron microscopy. J Natl Cancer Inst, 1974, 52(6): 1931-1934.
pmid: 4834422 |
[9] | György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger É, Pap E, Kittel Á, Nagy G, Falus A, Buzás EI. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci, 2011, 68(16): 2667-2688. |
[10] |
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, ARab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D'Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, El Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez-Valero A, Gardiner C, Gärtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Görgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu GK, Huang YY, Huber V, Hunt S, Ibrahim AGE, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang LZ, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ, Kornek M, Kosanović MM, Kovács ÁF, Krämer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lässer C, Laurent LC, Lavieu G, Lázaro-Ibáñez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linē A, Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörincz ÁM, Lötvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG, Meehan KL, Mertens I, Minciacchi VR, Möller A, Møller Jørgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-'t Hoen EN, Noren Hooten N, O'Driscoll L, O'Grady T, O'Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Østergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, von Strandmann EP, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saá P, Sahoo S, Salas-Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schøyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PRM, Silva AM, Skowronek A, Snyder OL, Soares RP, Sódar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ, Veit TD, Vella LJ, Velot É, Verweij FJ, Vestad B, Viñas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan XM, Yáñez-Mó M, Yin H, Yuana Y, Zappulli V, Zarubova J, Žėkas V, Zhang JY, Zhao ZZ, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles, 2018, 7(1): 1535750.
pmid: 30637094 |
[25] |
Gholizadeh S, Shehata Draz M, Zarghooni M, Sanati- Nezhad A, Ghavami S, Shafiee H, Akbari M. Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: current status and future directions. Biosens Bioelectron, 2017, 91: 588-605.
pmid: 28088752 |
[26] |
Gardiner C, Di Vizio D, Sahoo S, Théry C, Witwer KW, Wauben M, Hill AF. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles, 2016, 5(1): 32945.
pmid: 27802845 |
[27] |
Tian J, Casella G, Zhang Y, Rostami A, Li X. Potential roles of extracellular vesicles in the pathophysiology, diagnosis, and treatment of autoimmune diseases. Int J Biol Sci, 2020, 16(4): 620-632.
pmid: 32025210 |
[28] |
Sabatke B, Rossi IV, Sana A, Bonato LB, Ramirez MI. Extracellular vesicles biogenesis and uptake concepts: a comprehensive guide to studying host-pathogen communication. Mol Microbiol, 2024, 122(5): 613-629.
pmid: 37758682 |
[29] |
D’Acunzo P, Kim Y, Ungania JM, Pérez-González R, Goulbourne CN, Levy E. Isolation of mitochondria- derived mitovesicles and subpopulations of microvesicles and exosomes from brain tissues. Nat Protoc, 2022, 17(11): 2517-2549.
pmid: 35962195 |
[30] |
Sharma S, Rasool HI, Palanisamy V, Mathisen C, Schmidt M, Wong DT, Gimzewski JK. Structural- mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano, 2010, 4(4): 1921-1926.
pmid: 20218655 |
[31] |
Ashcroft BA, de Sonneville J, Yuana Y, Osanto S, Bertina R, Kuil ME, Oosterkamp TH. Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics. Biomed Microdevices, 2012, 14(4): 641-649.
pmid: 22391880 |
[32] |
Vorselen D, Marchetti M, López-Iglesias C, Peters PJ, Roos WH, Wuite GJL. Multilamellar nanovesicles show distinct mechanical properties depending on their degree of lamellarity. Nanoscale, 2018, 10(11): 5318-5324.
pmid: 29504612 |
[33] |
Gupta D, Zickler AM, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev, 2021, 178: 113961.
pmid: 34481030 |
[34] |
Kreimer S, Belov AM, Ghiran I, Murthy SK, Frank DA, Ivanov AR. Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res, 2015, 14(6): 2367-2384.
pmid: 25927954 |
[11] |
Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol, 2023, 23(4): 236-250.
pmid: 35927511 |
[12] |
Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol, 2023, 24(7): 454-476.
pmid: 36765164 |
[13] |
Clares-Pedrero I, Rocha-Mulero A, Palma-Cobo M, Cardeñes B, Yáñez-Mó M, Cabañas C. Molecular determinants involved in the docking and uptake of tumor-derived extracellular vesicles: implications in cancer. Int J Mol Sci, 2024, 25(6): 3449.
pmid: 38542421 |
[14] |
Verweij FJ, Balaj L, Boulanger CM, Carter DRF, Compeer EB, D'Angelo G, El Andaloussi S, Goetz JG, Gross JC, Hyenne V, Krämer-Albers EM, Lai CP, Loyer X, Marki A, Momma S, Nolte-'t Hoen ENM, Pegtel DM, Peinado H, Raposo G, Rilla K, Tahara H, Théry C, van Royen ME, Vandenbroucke RE, Wehman AM, Witwer K, Wu ZW, Wubbolts R, van Niel G. The power of imaging to understand extracellular vesicle biology in vivo. Nat Methods, 2021, 18(9): 1013-1026.
pmid: 34446922 |
[15] |
Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal, 2021, 19(1): 47.
pmid: 33892745 |
[16] |
Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Théry C. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles, 2014, 3(1): 26913.
pmid: 25536934 |
[17] |
Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JEK, Gould SJ. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol, 2006, 172(6): 923-935.
pmid: 16533950 |
[18] |
Nabhan JF, Hu RX, Oh RS, Cohen SN, Lu Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci USA, 2012, 109(11): 4146-4151.
pmid: 22315426 |
[19] |
Crescitelli R, Lässer C, Lötvall J. Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc, 2021, 16(3): 1548-1580.
pmid: 33495626 |
[35] |
Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao KN, Samuel M, Pathan M, Jois M, Chilamkurti N, Gangoda L, Mathivanan S. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol, 2016, 428(4): 688-692.
pmid: 26434508 |
[36] |
Ludwig AK, Giebel B. Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol, 2012, 44(1): 11-15.
pmid: 22024155 |
[37] |
Ma YZ, Wang KZ, Pan JB, Fan ZH, Tian CH, Deng XB, Ma KM, Xia XH, Huang YL, Zheng JC. Induced neural progenitor cells abundantly secrete extracellular vesicles and promote the proliferation of neural progenitors via extracellular signal-regulated kinase pathways. Neurobiol Dis, 2019, 124: 322-334.
pmid: 30528256 |
[38] |
Takeuchi T, Suzuki M, Fujikake N, Popiel HA, Kikuchi H, Futaki S, Wada K, Nagai Y. Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level. Proc Natl Acad Sci USA, 2015, 112(19): E2497-E2506.
pmid: 25918398 |
[39] | Soung YH, Ford S, Yan C, Chung J. Roles of integrins in regulating metastatic potentials of cancer cell derived exosomes. Mol Cell Toxicol, 2019, 15(3): 233-237. |
[40] |
Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell, 2011, 21(1): 77-91.
pmid: 21763610 |
[41] | Thompson AG, Gray E, Heman-Ackah SM, Mäger I, Talbot K, Andaloussi SE, Wood MJ, Turner MR. Extracellular vesicles in neurodegenerative disease — pathogenesis to biomarkers. Nat Rev Neurol, 2016, 12(6): 346-357. |
[42] |
Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, Hopmans ES, Lindenberg JL, de Gruijl TD, Würdinger T, Middeldorp JM. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA, 2010, 107(14): 6328-6333.
pmid: 20304794 |
[43] |
Balaj L, Lessard R, Dai LX, Cho YJ, Pomeroy SL, Breakefield XO, Skog J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun, 2011, 2(1): 180.
pmid: 21285958 |
[44] |
Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NHH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Kramer-Albers EM, Laitinen S, Lässer C, Lener T, Ligeti E, Linē A, Lipps G, Llorente A, Lötvall J, Manček-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-'t Hoen ENM, Nyman TA, O'Driscoll L, Olivan M, Oliveira C, Pállinger É, Del Portillo HA, Reventós J, Rigau M, Rohde E, Sammar M, Sánchez-Madrid F, Santarém N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MHM, De Wever O. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles, 2015, 4: 27066.
pmid: 25979354 |
[45] |
Del Conde I, Shrimpton CN, Thiagarajan P, López JA. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 2005, 106(5): 1604-1611.
pmid: 15741221 |
[46] |
Wei XJ, Liu CZ, Wang HX, Wang LS, Xiao FJ, Guo ZK, Zhang HC. Surface phosphatidylserine is responsible for the internalization on microvesicles derived from hypoxia-induced human bone marrow mesenchymal stem cells into human endothelial cells. PLoS One, 2016, 11(1): e0147360.
pmid: 26808539 |
[47] |
Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 2008, 319(5867): 1244-1247.
pmid: 18309083 |
[48] |
Beloribi S, Ristorcelli E, Breuzard G, Silvy F, Bertrand-Michel J, Beraud E, Verine A, Lombardo D. Exosomal lipids impact notch signaling and induce death of human pancreatic tumoral SOJ-6 cells. PLoS One, 2012, 7(10): e47480.
pmid: 23094054 |
[49] |
Zhao XX, Lei YX, Zheng JJ, Peng JY, Li Y, Yu L, Chen Y. Identification of markers for migrasome detection. Cell Discov, 2019, 5(1): 27.
pmid: 31123599 |
[50] |
Haraszti RA, Didiot MC, Sapp E, Leszyk J, Shaffer SA, Rockwell HE, Gao F, Narain NR, DiFiglia M, Kiebish MA, Aronin N, Khvorova A. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles, 2016, 5(1): 32570.
pmid: 27863537 |
[51] |
Matsui T, Osaki F, Hiragi S, Sakamaki Y, Fukuda M. ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells. EMBO Rep, 2021, 22(5): e51475.
pmid: 33724661 |
[52] |
Melentijevic I, Toth ML, Arnold ML, Guasp RJ, Harinath G, Nguyen KC, Taub D, Parker JA, Neri C, Gabel CV, Hall DH, Driscoll M. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature, 2017, 542(7641): 367-371.
pmid: 28178240 |
[53] |
Turek M, Banasiak K, Piechota M, Shanmugam N, Macias M, Śliwińska MA, Niklewicz M, Kowalski K, Nowak N, Chacinska A, Pokrzywa W. Muscle-derived exophers promote reproductive fitness. EMBO Rep, 2021, 22(8): e52071.
pmid: 34288362 |
[54] |
Willms E, Johansson HJ, Mäger I, Lee Y, Blomberg KEM, Sadik M, Alaarg A, Smith CI, Lehtiö J, El Andaloussi S, Wood MJA, Vader P. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep, 2016, 6: 22519.
pmid: 26931825 |
[55] |
van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228.
pmid: 29339798 |
[56] |
Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther, 2018, 188: 1-11.
pmid: 29476772 |
[57] | Xu R, Rai A, Chen MS, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer — implications for future improvements in cancer care. Nat Rev Clin Oncol, 2018, 15(10): 617-638. |
[58] |
Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, Zimmermann P, David G. Syndecan- syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol, 2012, 14(7): 677-685.
pmid: 22660413 |
[59] |
Tang SG, Buchkovich NJ, Henne WM, Banjade S, Kim YJ, Emr SD. ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. eLife, 2016, 5: e15507.
pmid: 27074665 |
[60] |
Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, Slavík J, Machala M, Zimmermann P. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun, 2014, 5: 3477.
pmid: 24637612 |
[61] |
Vidal M. Exosomes: revisiting their role as “garbage bags”. Traffic, 2019, 20(11): 815-828.
pmid: 31418976 |
[62] |
Marie PP, Fan SJ, Mason J, Wells A, Mendes CC, Wainwright SM, Scott S, Fischer R, Harris AL, Wilson C, Goberdhan D CI. Accessory ESCRT-III proteins are conserved and selective regulators of Rab11a-exosome formation. J Extracell Vesicles, 2023, 12(3): e12311.
pmid: 36872252 |
[63] |
Stuffers S, Sem Wegner C, Stenmark H, Brech A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic, 2009, 10(7): 925-937.
pmid: 19490536 |
[64] |
Gulbins E, Kolesnick R. Raft ceramide in molecular medicine. Oncogene, 2003, 22(45): 7070-7077.
pmid: 14557812 |
[65] |
Kajimoto T, Okada T, Miya S, Zhang LF, Nakamura SI. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat Commun, 2013, 4: 2712.
pmid: 24231649 |
[66] |
Perez-Hernandez D, Gutiérrez-Vázquez C, Jorge I, López-Martín S, Ursa A, Sánchez-Madrid F, Vázquez J, Yáñez-Mó M. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem, 2013, 288(17): 11649-11661.
pmid: 23463506 |
[67] |
Hurwitz SN, Conlon MM, Rider MA, Brownstein NC, Meckes DG. Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. J Extracell Vesicles, 2016, 5: 31295.
pmid: 27421995 |
[68] |
Rabas N, Palmer S, Mitchell L, Ismail S, Gohlke A, Riley JS, Tait SWG, Gammage P, Soares LL, Macpherson IR, Norman JC. PINK1 drives production of mtDNA-containing extracellular vesicles to promote invasiveness. J Cell Biol, 2021, 220(12): e202006049.
pmid: 34623384 |
[69] |
van Niel G, Bergam P, Di Cicco A, Hurbain I, Lo Cicero A, Dingli F, Palmulli R, Fort C, Potier MC, Schurgers LJ, Loew D, Levy D, Raposo G. Apolipoprotein E regulates amyloid formation within endosomes of pigment cells. Cell Rep, 2015, 13(1): 43-51.
pmid: 26387950 |
[70] |
Rana S, Claas C, Kretz CC, Nazarenko I, Zoeller M. Activation-induced internalization differs for the tetraspanins CD9 and Tspan8: impact on tumor cell motility. Int J Biochem Cell Biol, 2011, 43(1): 106-119.
pmid: 20937409 |
[71] |
Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S, Grega-Larson N, Tyska MJ, Weaver AM. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep, 2013, 5(5): 1159-1168.
pmid: 24290760 |
[72] |
Fader CM, Sánchez D, Furlán M, Colombo MI. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in K562 cells. Traffic, 2007, 9(2): 230-250.
pmid: 17999726 |
[73] |
Guo HS, Chitiprolu M, Roncevic L, Javalet C, Hemming FJ, Trung MT, Meng LR, Latreille E, de Souza CT, McCulloch D, Baldwin RM, Auer R, Côté J, Russell RC, Sadoul R, Gibbings D. Atg5 disassociates the V1V0-ATPase to promote exosome production and tumor metastasis independent of canonical macroautophagy. Dev Cell, 2017, 43(6): 716-730.e7.
pmid: 29257951 |
[74] |
Edgar JR, Manna PT, Nishimura S, Banting G, Robinson MS. Tetherin is an exosomal tether. eLife, 2016, 5: e17180.
pmid: 27657169 |
[75] |
Hessvik NP, Øverbye A, Brech A, Torgersen ML, Jakobsen IS, Sandvig K, Llorente A. PIKfyve inhibition increases exosome release and induces secretory autophagy. Cell Mol Life Sci, 2016, 73(24): 4717-4737.
pmid: 27438886 |
[76] |
Minakaki G, Menges S, Kittel A, Emmanouilidou E, Schaeffner I, Barkovits K, Bergmann A, Rockenstein E, Adame A, Marxreiter F, Mollenhauer B, Galasko D, Buzás EI, Schlötzer-Schrehardt U, Marcus K, Xiang W, Lie DC, Vekrellis K, Masliah E, Winkler J, Klucken J. Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy, 2018, 14(1): 98-119.
pmid: 29198173 |
[77] |
Buschow SI, Nolte-'t Hoen ENM, van Niel G, Pols MS ten Broeke T, Lauwen M, Ossendorp F, Melief CJM, Raposo G, Wubbolts R, Wauben MHM, Stoorvogel W. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic, 2009, 10(10): 1528-1542.
pmid: 19682328 |
[78] |
Hsu C, Morohashi Y, Yoshimura SI, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Grønborg M, Möbius W, Rhee J, Barr FA, Simons M. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol, 2010, 189(2): 223-232.
pmid: 20404108 |
[79] |
Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega- Larson NE, Seiki M, Tyska MJ, Weaver AM. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol, 2016, 214(2): 197-213.
pmid: 27402952 |
[80] |
Fader CM, Sánchez DG, Mestre MB, Colombo MI. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta, 2009, 1793(12): 1901-1916.
pmid: 19781582 |
[81] |
Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nat Cell Biol, 2012, 14(10): 1036-1045.
pmid: 22983114 |
[82] |
Wei Y, Wang D, Jin FF, Bian Z, Li LM, Liang HW, Li MZ, Shi L, Pan CY, Zhu DH, Chen X, Hu G, Liu Y, Zhang CY, Zen K. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nat Commun, 2017, 8: 14041.
pmid: 28067230 |
[83] |
Hyenne V, Apaydin A, Rodriguez D, Spiegelhalter C, Hoff-Yoessle S, Diem M, Tak S, Lefebvre O, Schwab Y, Goetz JG, Labouesse M. RAL-1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol, 2015, 211(1): 27-37.
pmid: 26459596 |
[84] |
Wei DH, Zhan WX, Gao Y, Huang LY, Gong R, Wang W, Zhang RH, Wu YZ, Gao S, Kang TB. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res, 2021, 31(2): 157-177.
pmid: 32958903 |
[85] |
Fauré J, Lachenal G, Court M, Hirrlinger J, Chatellard- Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci, 2006, 31(4): 642-648.
pmid: 16446100 |
[86] |
Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, Bodon G, Blot B, Haase G, Goldberg Y, Sadoul R. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci, 2011, 46(2): 409-418.
pmid: 21111824 |
[87] |
Savina A, Furlán M, Vidal M, Colombo MI. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem, 2003, 278(22): 20083-20090.
pmid: 12639953 |
[88] |
Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A, Colone M, Tatti M, Sargiacomo M, Fais S. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem, 2009, 284(49): 34211-34222.
pmid: 19801663 |
[89] |
King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer, 2012, 12: 421.
pmid: 22998595 |
[90] |
Piccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and clinical implications. Blood Rev, 2007, 21(3): 157-171.
pmid: 17118501 |
[91] |
Lima LG, Chammas R, Monteiro RQ, Moreira MEC, Barcinski MA. Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett, 2009, 283(2): 168-175.
pmid: 19401262 |
[92] |
Hoehn RS, Jernigan PL, Japtok L, Chang AL, Midura EF, Caldwell CC, Kleuser B, Lentsch AB, Edwards MJ, Gulbins E, Pritts TA. Acid sphingomyelinase inhibition in stored erythrocytes reduces transfusion-associated lung inflammation. Ann Surg, 2017, 265(1): 218-226.
pmid: 28009749 |
[93] |
Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D'Souza-Schorey C. ARF6- regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol, 2009, 19(22): 1875-1885.
pmid: 19896381 |
[94] |
Sedgwick AE, Clancy JW, Olivia Balmert M, D'Souza-Schorey C. Extracellular microvesicles and invadopodia mediate non-overlapping modes of tumor cell invasion. Sci Rep, 2015, 5: 14748.
pmid: 26458510 |
[95] |
Schlienger S, Campbell S, Claing A. ARF1 regulates the Rho/MLC pathway to control EGF-dependent breast cancer cell invasion. Mol Biol Cell, 2014, 25(1): 17-29.
pmid: 24196838 |
[96] |
Li B, Antonyak MA, Zhang J, Cerione RA. RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene, 2012, 31(45): 4740-4749.
pmid: 22266864 |
[97] |
Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, True LD, Rubin MA, Adam RM, Beroukhim R, Demichelis F, Freeman MR. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res, 2009, 69(13): 5601-5609.
pmid: 19549916 |
[98] |
Wehman AM, Poggioli C, Schweinsberg P, Grant BD, Nance J. The P4-ATPase TAT-5 inhibits the budding of extracellular vesicles in C. elegans embryos. Curr Biol, 2011, 21(23): 1951-1959.
pmid: 22100064 |
[99] |
Wang T, Gilkes DM, Takano N, Xiang LS, Luo WB, Bishop CJ, Chaturvedi P, Green JJ, Semenza GL. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci USA, 2014, 111(31): E3234-E3242.
pmid: 24938788 |
[100] |
Huang C, Hays FA, Tomasek JJ, Benyajati S, Zhang XA. Tetraspanin CD82 interaction with cholesterol promotes extracellular vesicle-mediated release of ezrin to inhibit tumour cell movement. J Extracell Vesicles, 2019, 9(1): 1692417.
pmid: 31807237 |
[101] |
Atkin-Smith GK, Miles MA, Tixeira R, Lay FT, Duan MB, Hawkins CJ, Phan TK, Paone S, Mathivanan S, Hulett MD, Chen WS, Poon IKH. Plexin B2 is a regulator of monocyte apoptotic cell disassembly. Cell Rep, 2019, 29(7): 1821-1831.e3.
pmid: 31722200 |
[102] |
Ma L, Li Y, Peng JY, Wu DN, Zhao XX, Cui YT, Chen LL, Yan XJ, Du YN, Yu L. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res, 2014, 25(1): 24-38.
pmid: 25342562 |
[103] |
Jiang D, He JZ, Yu L. The migrasome, an organelle for cell-cell communication. Trends Cell Biol, 2025, 35(3): 205-216.
pmid: 38866683 |
[104] |
Raiborg C, Bache KG, Mehlum A, Stang E, Stenmark H. Hrs recruits clathrin to early endosomes. EMBO J, 2001, 20(17): 5008-5021.
pmid: 11532964 |
[105] |
Larios J, Mercier V, Roux A, Gruenberg J. ALIX- and ESCRT-III-dependent sorting of tetraspanins to exosomes. J Cell Biol, 2020, 219(3): e201904113.
pmid: 32049272 |
[106] |
Han QF, Lv LH, Wei JX, Lei X, Lin HM, Li GL, Cao J, Xie JY, Yang WB, Wu SB, You J, Lu J, Liu PQ, Min J. Vps4A mediates the localization and exosome release of β-catenin to inhibit epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett, 2019, 457: 47-59.
pmid: 31059752 |
[107] |
Mazurov D, Barbashova L, Filatov A. Tetraspanin protein CD9 interacts with metalloprotease CD10 and enhances its release via exosomes. FEBS J, 2013, 280(5): 1200-1213.
pmid: 23289620 |
[108] |
Hurwitz SN, Nkosi D, Conlon MM, York SB, Liu X, Tremblay DC, Meckes DG. CD63 Regulates epstein-barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NF-κB signaling. J Virol, 2017, 91(5): e02251-16.
pmid: 27974566 |
[109] |
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sánchez-Madrid F. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun, 2013, 4: 2980.
pmid: 24356509 |
[110] |
Lin FX, Zeng ZC, Song YZ, Li L, Wu ZJ, Zhang XD, Li ZW, Ke X, Hu X. YBX-1 mediated sorting of miR-133 into hypoxia/reoxygenation-induced EPC-derived exosomes to increase fibroblast angiogenesis and MEndoT. Stem Cell Res Ther, 2019, 10(1): 263.
pmid: 31443679 |
[111] |
Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, Battistelli C, Alonzi T, Weisz A, Tripodi M. The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep, 2016, 17(3): 799-808.
pmid: 27732855 |
[112] |
McKenzie AJ, Hoshino D, Hong NH, Cha DJ, Franklin JL, Coffey RJ, Patton JG, Weaver AM. KRAS-MEK signaling controls Ago2 sorting into exosomes. Cell Rep, 2016, 15(5): 978-987.
pmid: 27117408 |
[113] |
Cha DJ, Franklin JL, Dou YC, Liu Q, Higginbotham JN, Demory Beckler M, Weaver AM, Vickers K, Prasad N, Levy S, Zhang B, Coffey RJ, Patton JG. KRAS- dependent sorting of miRNA to exosomes. eLife, 2015, 4: e07197.
pmid: 26132860 |
[114] |
Yanshina DD, Kossinova OA, Gopanenko AV, Krasheninina OA, Malygin AA, Venyaminova AG, Karpova GG. Structural features of the interaction of the 3′-untranslated region of mRNA containing exosomal RNA-specific motifs with YB-1, a potential mediator of mRNA sorting. Biochimie, 2018, 144: 134-143.
pmid: 29133115 |
[115] |
Ashley J, Cordy B, Lucia D, Fradkin LG, Budnik V, Thomson T. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell, 2018, 172(1-2): 262-274.e11.
pmid: 29328915 |
[116] |
Yokoi A, Villar-Prados A, Oliphint PA, Zhang JH, Song XZ, De Hoff P, Morey R, Liu JS, Roszik J, Clise-Dwyer K, Burks JK, O'Halloran TJ, Laurent LC, Sood AK. Mechanisms of nuclear content loading to exosomes. Sci Adv, 2019, 5(11): eaax8849.
pmid: 31799396 |
[117] |
French KC, Antonyak MA, Cerione RA. Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake. Semin Cell Dev Biol, 2017, 67: 48-55.
pmid: 28104520 |
[118] |
Ginini L, Billan S, Fridman E, Gil Z. Insight into extracellular vesicle-cell communication: from cell recognition to intracellular fate. Cells, 2022, 11(9): 1375.
pmid: 35563681 |
[119] |
Segura E, Guérin C, Hogg N, Amigorena S, Théry C. CD8+ dendritic cells use LFA-1 to capture MHC- peptide complexes from exosomes in vivo. J Immunol, 2007, 179(3): 1489-1496.
pmid: 17641014 |
[120] |
Clayton A, Turkes A, Dewitt S, Steadman R, Mason MD, Hallett MB. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J, 2004, 18(9): 977-979.
pmid: 15059973 |
[121] |
Xu JJ, Wang YY, Hsu CY, Gao YX, Meyers CA, Chang L, Zhang L, Broderick K, Ding C, Peault B, Witwer K, James AW. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. eLife, 2019, 8: e48191.
pmid: 31482845 |
[122] |
Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA, 2013, 110(43): 17380-17385.
pmid: 24101524 |
[123] |
Saunderson SC, Dunn AC, Crocker PR, McLellan AD. CD169 mediates the capture of exosomes in spleen and lymph node. Blood, 2014, 123(2): 208-216.
pmid: 24255917 |
[124] |
Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S. Identification of Tim4 as a phosphatidylserine receptor. Nature, 2007, 450(7168): 435-439.
pmid: 17960135 |
[125] |
Chanda D, Otoupalova E, Hough KP, Locy ML, Bernard K, Deshane JS, Sanderson RD, Mobley JA, Thannickal VJ. Fibronectin on the surface of extracellular vesicles mediates fibroblast invasion. Am J Respir Cell Mol Biol, 2019, 60(3): 279-288.
pmid: 30321056 |
[126] | Lin L, Shi AB. Endocytic recycling pathways and the regulatory mechanisms. Hereditas(Beijing), 2019, 41(6): 451-468. |
林珑, 史岸冰. 细胞内吞循环运输通路及其分子调控机制. 遗传, 2019, 41(6): 451-468. | |
[127] |
Ju YP, Guo H, Edman M, Hamm-Alvarez SF. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv Drug Deliv Rev, 2020, 157: 118-141.
pmid: 32758615 |
[128] |
Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, Xiao ZD. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem, 2014, 289(32): 22258-22267.
pmid: 24951588 |
[129] |
Wan Z, Zhao LB, Lu F, Gao XT, Dong Y, Zhao YX, Wei MY, Yang GD, Xing CY, Liu L. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics, 2020, 10(1): 218-230.
pmid: 31903116 |
[130] |
Frühbeis C, Fröhlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, Kirchhoff F, Möbius W, Goebbels S, Nave KA, Schneider A, Simons M, Klugmann M, Trotter J, Krämer-Albers EM. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol, 2013, 11(7): e1001604.
pmid: 23874151 |
[131] |
Parton RG, del Pozo MA. Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol, 2013, 14(2): 98-112.
pmid: 23340574 |
[132] |
Tu CG, Du ZM, Zhang H, Feng YY, Qi YJ, Zheng YJ, Liu JB, Wang JH. Endocytic pathway inhibition attenuates extracellular vesicle-induced reduction of chemosensitivity to bortezomib in multiple myeloma cells. Theranostics, 2021, 11(5): 2364-2380.
pmid: 33500730 |
[133] |
Rai AK, Johnson PJ. Trichomonas vaginalis extracellular vesicles are internalized by host cells using proteoglycans and caveolin-dependent endocytosis. Proc Natl Acad Sci USA, 2019, 116(43): 21354-21360.
pmid: 31601738 |
[134] |
Mylvaganam S, Freeman SA, Grinstein S. The cytoskeleton in phagocytosis and macropinocytosis. Curr Biol, 2021, 31(10): R619-R632.
pmid: 34033794 |
[135] |
Li H, Pinilla-Macua I, Ouyang YS, Sadovsky E, Kajiwara K, Sorkin A, Sadovsky Y. Internalization of trophoblastic small extracellular vesicles and detection of their miRNA cargo in P-bodies. J Extracell Vesicles, 2020, 9(1): 1812261.
pmid: 32944196 |
[136] |
Fitzner D, Schnaars M, van Rossum D, Krishnamoorthy G, Dibaj P, Bakhti M, Regen T, Hanisch UK, Simons M. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci, 2011, 124(Pt 3): 447-458.
pmid: 21242314 |
[137] |
Nakase I, Kobayashi NB, Takatani-Nakase T, Yoshida T. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci Rep, 2015, 5: 10300.
pmid: 26036864 |
[138] |
Lukácsi S, Farkas Z, Saskői É, Bajtay Z, Takács-Vellai K. Conserved and distinct elements of phagocytosis in human and C. elegans. Int J Mol Sci, 2021, 22(16): 8934.
pmid: 34445642 |
[139] |
Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, Zhou Q, Sui SF. Cellular internalization of exosomes occurs through phagocytosis. Traffic, 2010, 11(5): 675-687.
pmid: 20136776 |
[140] |
Wang Y, Arnold ML, Smart AJ, Wang GQ, Androwski RJ, Morera A, Nguyen KCQ, Schweinsberg PJ, Bai G, Cooper J, Hall DH, Driscoll M, Grant BD. Large vesicle extrusions from C. elegans neurons are consumed and stimulated by glial-like phagocytosis activity of the neighboring cell. eLife, 2023, 12: e82227.
pmid: 36861960 |
[141] |
Escrevente C, Keller S, Altevogt P, Costa J. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer, 2011, 11(1): 108.
pmid: 21439085 |
[142] |
Prada I, Meldolesi J. Binding and fusion of extracellular vesicles to the plasma membrane of their cell targets. Int J Mol Sci, 2016, 17(8): 1296.
pmid: 27517914 |
[143] | Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan MLG, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang ZL, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood, 2012, 119(3): 756-766. |
[144] |
Nakase I, Ueno N, Matsuzawa M, Noguchi K, Hirano M, Omura M, Takenaka T, Sugiyama A, Bailey Kobayashi N, Hashimoto T, Takatani-Nakase T, Yuba E, Fujii I, Futaki S, Yoshida T. Environmental pH stress influences cellular secretion and uptake of extracellular vesicles. FEBS Open Bio, 2021, 11(3): 753-767.
pmid: 33533170 |
[20] |
Cano A, Ettcheto M, Bernuz M, Puerta R, de Antonio EE, Sánchez-López E, Souto EB, Camins A, Martí M, Pividori MI, Boada M, Ruiz A. Extracellular vesicles, the emerging mirrors of brain physiopathology. Int J Biol Sci, 2023, 19(3): 721-743.
pmid: 36778117 |
[21] |
Varderidou-Minasian S, Lorenowicz MJ. Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: challenges and opportunities. Theranostics, 2020, 10(13): 5979-5997.
pmid: 32483432 |
[22] |
Wu ZS, Zhang ZQ, Xia WC, Cai JJ, Li YQ, Wu S. Extracellular vesicles in urologic malignancies— implementations for future cancer care. Cell Prolif, 2019, 52(6): e12659.
pmid: 31469460 |
[23] |
Yang CH, Xue YX, Duan Y, Mao C, Wan MM. Extracellular vesicles and their engineering strategies, delivery systems, and biomedical applications. J Control Release, 2024, 365: 1089-1123.
pmid: 38065416 |
[24] |
Kaur M, Fusco S, Van den Broek B, Aseervatham J, Rostami A, Iacovitti L, Grassi C, Lukomska B, Srivastava AK. Most recent advances and applications of extracellular vesicles in tackling neurological challenges. Med Res Rev, 2024, 44(4): 1923-1966.
pmid: 38500405 |
[145] |
Cerezo-Magaña M, Christianson HC, van Kuppevelt TH, Forsberg-Nilsson K, Belting M. Hypoxic induction of exosome uptake through proteoglycan-dependent endocytosis fuels the lipid droplet phenotype in glioma. Mol Cancer Res, 2021, 19(3): 528-540.
pmid: 33288734 |
[146] | Zhao HY, Yang LF, Baddour J, Achreja A, Bernard V, Moss T, Marini JC, Tudawe T, Seviour EG, San Lucas FA, Alvarez H, Gupta S, Maiti SN, Cooper L, Peehl D, Ram PT, Maitra A, Nagrath D. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife, 2016, 5: e10250. |
[147] |
Yao ZL, Qiao YS, Li XF, Chen JL, Ding JH, Bai L, Shen F, Shi BS, Liu J, Peng L, Li JH, Yuan ZH. Exosomes exploit the virus entry machinery and pathway to transmit alpha interferon-induced antiviral activity. J Virol, 2018, 92(24): e01578-18.
pmid: 30282711 |
[148] |
Heusermann W, Hean J, Trojer D, Steib E, von Bueren S, Graff-Meyer A, Genoud C, Martin K, Pizzato N, Voshol J, Morrissey DV, Andaloussi SEL, Wood MJ,Meisner- Kober NC. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol, 2016, 213(2): 173-184.
pmid: 27114500 |
[149] |
Rappa G, Santos MF, Green TM, Karbanová J, Hassler J, Bai YS, Barsky SH, Corbeil D, Lorico A. Nuclear transport of cancer extracellular vesicle-derived biomaterials through nuclear envelope invagination-associated late endosomes. Oncotarget, 2017, 8(9): 14443-14461.
pmid: 28129640 |
[150] |
Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol, 2019, 21(1): 9-17.
pmid: 30602770 |
[151] |
Morad G, Carman CV, Hagedorn EJ, Perlin JR, Zon LI, Mustafaoglu N, Park TE, Ingber DE, Daisy CC, Moses MA. Tumor-derived extracellular vesicles breach the intact blood-brain barrier via transcytosis. ACS Nano, 2019, 13(12): 13853-13865.
pmid: 31479239 |
[152] |
Verdi V, Bécot A, van Niel G, Verweij FJ. In vivo imaging of EVs in zebrafish: new perspectives from “the waterside”. FASEB Bioadv, 2021, 3(11): 918-929.
pmid: 34761174 |
[1] | 马佳雯, 梁新乐. 基于宏病毒组测序技术解析异常发酵醋醪噬菌体群落结构与功能[J]. 遗传, 2025, 47(4): 489-498. |
[2] | 刘奇, 施鹏. 脊椎动物回声定位发声和听觉机制研究进展[J]. 遗传, 2025, 47(2): 237-257. |
[3] | 杨帆, 韩巧玲, 赵文迪, 赵玥. 基于层级和全局特征结合的蛋白质序列EC编号预测[J]. 遗传, 2024, 46(8): 661-669. |
[4] | 梁卉, 王雪, 司敬方, 张毅. 利用基因组标记和机器学习算法对中国牛品种的分类准确性研究[J]. 遗传, 2024, 46(7): 530-539. |
[5] | 何江平, 陈捷凯. 转座元件、表观遗传调控与细胞命运决定[J]. 遗传, 2021, 43(9): 822-834. |
[6] | 刘明, 李祎, 杨亚芳, 晏于文, 刘凡, 李彩霞, 曾发明, 赵雯婷. 中国汉族人群脸部特征相关SNP位点研究[J]. 遗传, 2020, 42(7): 680-690. |
[7] | 张悦, 冯颖, 马芳. 早期停育胚胎的滋养层细胞相关基因与特征分析[J]. 遗传, 2020, 42(10): 1004-1016. |
[8] | 刘玄石, 李巍. 早产相关基因的挖掘与特征分析[J]. 遗传, 2019, 41(5): 413-421. |
[9] | 史悦,许争争,鲁欢,慈维敏. 肿瘤突变特征与病理分型的关联研究[J]. 遗传, 2018, 40(11): 1033-1038. |
[10] | 李莉云,史佳楠,杨烁,孙财强,刘国振. 基于转录特征的水稻WRKY转录因子功能注释[J]. 遗传, 2016, 38(2): 126-136. |
[11] | 孙长斌, 张曦. 超级增强子研究进展[J]. 遗传, 2016, 38(12): 1056-1068. |
[12] | 黄益敏 夏梦颖 黄石. 遗传多样性上限假说所揭示的进化历程[J]. 遗传, 2013, 35(5): 599-606. |
[13] | 杨韵龙 吴建国 周元飞 石春海. 一个新的水稻小穗梗弯曲突变体的形态特征及基因定位[J]. 遗传, 2013, 35(2): 208-214. |
[14] | 金逍逍 孙悦娜 王日昕 汤达 赵盛龙 徐田军. 虾虎鱼类线粒体全基因组序列结构特征分析及系统发育关系探讨[J]. 遗传, 2013, 35(12): 1391-1402. |
[15] | 孙红艳,王锋,曹文广. 细胞命运转变——谱系重编程技术研究进展[J]. 遗传, 2012, 34(8): 985-992. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: