遗传 ›› 2016, Vol. 38 ›› Issue (2): 126-136.doi: 10.16288/j.yczz.15-403
李莉云,史佳楠,杨烁,孙财强,刘国振
收稿日期:
2015-09-21
修回日期:
2015-11-04
出版日期:
2016-02-20
发布日期:
2016-01-08
通讯作者:
刘国振,博士,教授,研究方向:水稻抗病机理及蛋白质组学。E-mail: gzhliu@genomics.org.cn
作者简介:
李莉云,博士,教授,研究方向:水稻抗病的分子机理。E-mail: liliyun@hebau.edu.cn史佳楠,博士研究生,研究方向:水稻抗病机理及蛋白质组学。E-mail: shijianan_mbb@126.com李莉云和史佳楠为并列第一作者。
基金资助:
Liyun Li, Jianan Shi, Shuo Yang, Caiqiang Sun, Guozhen Liu
Received:
2015-09-21
Revised:
2015-11-04
Online:
2016-02-20
Published:
2016-01-08
摘要: 转录水平的变化是转录因子功能发挥的重要体现形式,高通量测序技术的发展和应用揭示了丰富的转录数据,对转录数据的深度分析有助于基因的注释和功能研究。本文以水稻WRKY转录因子家族为对象,在总结WRKY基因功能的基础上,对生物和非生物胁迫、发育、营养和激素处理等不同生物学过程中的转录数据进行了系统的整理和挖掘,获得了不同反应中转录变化的特定WRKY基因清单,丰富了水稻WRKY转录因子家族成员的注释信息,以期这些信息为后续的功能研究提供有价值的参考。
李莉云,史佳楠,杨烁,孙财强,刘国振. 基于转录特征的水稻WRKY转录因子功能注释[J]. 遗传, 2016, 38(2): 126-136.
Liyun Li, Jianan Shi, Shuo Yang, Caiqiang Sun, Guozhen Liu. Functional annotation of rice WRKY transcription factors based on their transcriptional features[J]. HEREDITAS(Beijing), 2016, 38(2): 126-136.
[1] Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends Plant Sci , 2000, 5(5): 199-206. [2] Kim CY, Lee SH, Park HC, Bae CG, Cheong YH, Choi YJ, Han CD, Lee SY, Lim CO, Cho MJ. Identification of rice blast fungal elicitor-responsive genes by differential display analysis. Mol Plant Microbe Interact , 2000, 13(4): 470-474. [3] Cheng HT, Wang SP. WRKY-type transcription factors: a significant factor in rice-pathogen interactions. Sci Sin Vitae , 2014, 44(8): 784-793. 成洪涛, 王石平. 水稻-病原互作中的重要角色: WRKY类转录因子. 中国科学: 生命科学, 2014, 44(8): 784-793. [4] Ross CA, Liu Y, Shen QJ. The WRKY gene family in rice ( Oryza sativa ). J Int Plant Biol , 2007, 49(6): 827-842. [5] Tian Y, Lu XY, Peng LS, Fang J. The structure and function of plant WRKY transcription factors. Hereditas (Beijing) , 2006, 28(12): 1607-1612. 田云, 卢向阳, 彭丽莎, 方俊. 植物WRKY转录因子结构特点及其生物学功能. 遗传, 2006, 12(12): 1607-1612. [6] Xie Z, Zhang ZL, Zou XL, Huang J, Ruas P, Thompson D, Shen QJ. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol , 2005, 137(1): 176-189. [7] Zhang ZL, Xie Z, Zou XL, Casaretto J, Ho THD, Shen QJ. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol , 2004, 134(4): 1500-1513. [8] Berri S, Abbruscato P, Faivre-Rampant O, Brasileiro ACM, Fumasoni I, Satoh K, Kikuchi S, Mizzi L, Morandini P, Pè ME, Piffanelli P. Characterization of WRKY co-regulatory networks in rice and Arabidopsis . BMC Plant Biol , 2009, 9: 120. [9] Ryu HS, Han M, Lee SK, Cho JI, Ryoo N, Heu S, Lee YH, Bhoo SH, Wang GL, Hahn TR, Jeon JS. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep , 2006, 25(8): 836-847. [10] Qiu YP, Jing SJ, Fu J, Li L, Yu DQ. Cloning and analysis of expression profile of 13 WRKY genes in rice. Chin Sci Bull , 2004, 49(18): 1860-1869. 仇玉萍, 荆邵娟, 付坚, 李璐, 余迪求. 13个水稻WRKY基因的克隆及其表达谱分析. 科学通报, 2004, 49(18): 1860-1869. [11] Rice WRKY Working Group. Nomenclature report on rice WRKY's - Conflict regarding gene names and its solution. Rice , 2012, 5: 3. [12] Miao LY, Zhou L, Yang S, Li LY, Li XJ, Fan W, Lan JP, Shi JN, Liu LJ, Liu GZ. Characterization of transcription, expression and binding properties with W-box of rice transcription factor WRKY42 gene. Prog Biochem Biophy s, 2014, 41(7): 682-692. 缪刘杨, 周亮, 杨烁, 李莉云, 李雪姣, 范伟, 兰金苹, 史佳楠, 刘丽娟, 刘国振. 水稻转录因子 WRKY42 的转录、表达及其与W-box的结合特征分析. 生物化学与生物物理进展, 2014, 41(7): 682-692. [13] Narsai R, Wang C, Chen J, Wu JL, Shou HX, Whelan J. Antagonistic, overlapping and distinct responses to biotic stress in rice ( Oryza sativa ) and interactions with abiotic stress. BMC Genomics , 2013, 14: 93-113. [14] Abbruscato P, Nepusz T, Mizzi L, Del Corvo M, Morandini P, Fumasoni I, Michel C, Paccanaro A, Guiderdoni E, Schaffrath U, Morel JB, Piffanelli P, Faivre-Rampant O. OsWRKY22 , a monocot WRKY gene, plays a role in the resistance response to blast. Mol Plant Pathol , 2012, 13(8): 828-841. [15] Grewal RK, Gupta S, Das S. Xanthomonas oryzae pv oryzae triggers immediate transcriptomic modulations in rice. BMC Genomics , 2012, 13: 49. [16] Qiu DY, Xiao J, Xie WB, Liu HB, Li XH, Xiong LZ, Wang SP. Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant , 2008, 1(3): 538-551. [17] Tao Z, Liu HB, Qiu DY, Zhou Y, Li XH, Xu CG, Wang SP. A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant Physiol , 2009, 151(2): 936-948. [18] Peng Y, Bartley LE, Chen XW, Dardick C, Chern M, Ruan R, Canlas PE, Ronald PC. OsWRKY62 is a negative regulator of basal and Xa21 -mediated defense against Xanthomonas Oryzae pv. Oryzae in rice. Mol Plant , 2008, 1(3): 446-458. [19] Liu XQ, Bai XQ, Wang XJ, Chu CC. OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol , 2007, 164(8): 969-979. [20] Liu XQ, Bai XQ, Qian Q, Wang XJ, Chen MS, Chu CC. OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res , 2005, 15(8): 593-603. [21] Lan A, Huang J, Zhao W, Peng Y, Chen Z, Kang D. A salicylic acid-induced rice ( Oryza sativa L.) transcription factor OsWRKY77 is involved in disease resistance of Arabidopsis thaliana . Plant Biol , 2013, 15(3): 452-461. [22] Shaik R, Ramakrishna W. Genes and co-expression modules common to drought and bacterial stress responses in Arabidopsis and rice. PLoS One , 2013, 8(10): e77261. [23] Chujo T, Miyamoto K, Shimogawa T, Shimizu T, Otake Y, Yokotani N, Nishizawa Y, Shibuya N, Nojiri H, Yamane H, Minami E, Okada K. OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Mol Biol , 2013, 82(1-2): 23-37. [24] Wei T, Ou B, Li JB, Zhao Y, Guo DS, Zhu YY, Chen ZL, Gu HY, Li CY, Qin GJ, Qu LJ. Transcriptional profiling of rice early response to Magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance. PLoS One , 2013, 8(3): e59720. [25] Peng XX, Hu YJ, Tang XK, Zhou PL, Deng XB, Wang HH, Guo ZJ. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta , 2012, 236(5): 1485-1498. [26] Zhang J, Peng YL, Guo ZJ. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res , 2008, 18(4): 508-521. [27] Qiu DY, Xiao J, Ding XH, Xiong M, Cai M, Cao YL, Li XH, Xu CG, Wang SP. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact , 2007, 20(5): 492-499. [28] Chujo T, Takai R, Akimoto-Tomiyama C, Ando S, Minami E, Nagamura Y, Kaku H, Shibuya N, Yasuda M, Nakashita H, Umemura K, Okada A, Okada K, Nojiri H, Yamane H. Involvement of the elicitor-induced gene OsWRKY53 in the expression of defense-related genes in rice. Biochim Biophys Acta , 2007, 1769(7-8): 497-505. [29] Wang HH, Hao JJ, Chen XJ, Hao ZN, Wang X, Lou YG, Peng YL, Guo ZJ. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol , 2007, 65(6): 799-815. [30] Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell , 2007, 19(6): 2064-2076. [31] Peng XX, Tang XK, Zhou PL, Hu YJ, Deng XB, He Y, Wang HH. Isolation and expression patterns of rice WRKY82 transcription factor gene responsive to both biotic and abiotic stresses. Agric Sci China , 2011, 10(6): 893-901. [32] Chao JQ, Jin J, Wang D, Han R, Zhu RS, Zhu YG, Li SQ. Cytological and transcriptional dynamics analysis of host plant revealed stage-specific biological processes related to compatible rice- Ustilaginoidea virens interaction. PLoS One , 2014, 9(3): e91391. [33] Yang L, Du ZG, Gao F, Wu KC, Xie LH, Li Y, Wu ZJ, Wu JG. Transcriptome profiling confirmed correlations between symptoms and transcriptional changes in RDV infected rice and revealed nucleolus as a possible target of RDV manipulation. Virol J , 2014, 11: 81. [34] Satoh K, Shimizu T, Kondoh H, Hiraguri A, Sasaya T, Choi IR, Omura T, Kikuchi S. Relationship between symptoms and gene expression induced by the infection of three strains of rice dwarf virus . PLoS One , 2011, 6(3): e18094. [35] Satoh K, Saji S, Ito S, Shimizu H, Saji H, Kikuchi S. Gene response in rice plants treated with continuous fog influenced by pH, was similar to that treated with biotic stress. Rice , 2014, 7(1): 10. [36] Li R, Zhang J, Li JC, Zhou GX, Wang Q, Bian WB, Erb M, Lou YG. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores. Elife , 2015, 4: e04805. [37] Ye M, Song YY, Long J, Wang RL, Baerson SR, Pan ZQ, Zhu-Salzman K, Xie JF, Cai KZ, Luo SM, Zeng RS. Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proc Natl Acad Sci USA , 2013, 110(38): E3631-E3639. [38] Peng Y, Bartley LE, Canlas P, Ronald PC. OsWRKY iIa Transcription factors modulate rice innate immunity. Rice , 2010, 3(1): 36-42. [39] Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H, Minami E, Nishizawa Y. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J Exp Bot , 2013, 64(16): 5085-5097. [40] Huang LY, Zhang F, Zhang F, Wang WS, Zhou YL, Fu BY, Li ZK. Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. BMC Genomics , 2014, 15: 1026. [41] Nuruzzaman M, Sharoni AM, Satoh K, Kumar A, Leung H, Kikuchi S. Comparative transcriptome profiles of the WRKY gene family under control, hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation. J Plant Physiol , 2014, 171(1): 2-13. [42] Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol , 2008, 49(6): 865-879. [43] Song Y, Chen LG, Zhang LP, Yu DQ. Overexpression of Os WRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis . J Biosci , 2010, 35(3): 459-471. [44] Guo MX, Wang RC, Wang J, Hua K, Wang YM, Liu XQ, Yao SG. ALT1, a Snf2 family chromatin remodeling ATPase, negatively regulates alkaline tolerance through enhanced defense against oxidative stress in rice. PLoS One , 2014, 9(12): e112515. [45] Ricachenevsky FK, Sperotto RA, Menguer PK, Fett JP. Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Mol Biol Rep , 2010, 37(8): 3735-3745. [46] Xiao J, Cheng HT, Li XH, Xiao JH, Xu CG, Wang SP. Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements. Plant Physiol , 2013, 163(4): 1868-1882. [47] Shen HS, Liu CT, Zhang Y, Meng XP, Zhou X, Chu CC, Wang XP. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol , 2012, 80(3): 241-253. [48] Peng XX, Hu YJ, Tang XK, Zhou PL, Deng XB, Wang HH. Isolation and expression profiles of rice WRKY30 induced by jasmonic acid application and fungal pathogen infection. Sci Agric Sin , 2011, 44(12): 2454-2461. 彭喜旭, 胡耀军, 唐新科, 周平兰, 邓小波, 王海华. 茉莉酸和真菌病原诱导的水稻WRKY30转录因子基因的分离及表达特征. 中国农业科学, 2011, 44(12): 2454-2461. [49] Qiu YP, Yu DQ. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis . Environ Exp Bot , 2009, 65(1): 35-47. [50] Raineri J, Wang SH, Peleg Z, Blumwald E, Chan RL. The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. Plant Mol Biol , 2015, 88(4-5): 401-413. [51] Ray S, Dansana PK, Giri J, Deveshwar P, Arora R, Agarwal P, Khurana JP, Kapoor S, Tyagi AK. Modulation of transcription factor and metabolic pathway genes in response to water-deficit stress in rice. Funct Integr Genomics , 2011, 11(1): 157-178. [52] Tao Z, Kou YJ, Liu HB, Li XH, Xiao JH, Wang SP. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot , 2011, 62(14): 4863-4874. [53] Mittal D, Madhyastha DA, Grover A. Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice. PLoS One , 2012, 7(7): e40899. [54] Jing SJ, Zhou X, Song Y, Yu DQ. Heterologous expression of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis . Plant Growth Regul , 2009, 58(2): 181-190. [55] Kang K, Park S, Natsagdorj U, Kim YS, Back K. Methanol is an endogenous elicitor molecule for the synthesis of tryptophan and tryptophan-derived secondary metabolites upon senescence of detached rice leaves. Plant J , 2011, 66(2): 247-257. [56] Chi WC, Chen YA, Hsiung YC, Fu SF, Chou CH, Trinh NN, Chen YC, Huang HJ. Autotoxicity mechanism of Oryza sativa : transcriptome response in rice roots exposed to ferulic acid. BMC Genomics , 2013, 14: 351-363. [57] Chen YA, Chi WC, Trinh NN, Huang LY, Chen YC, Cheng KT, Huang TL, Lin CY, Huang HJ. Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings. PLoS One , 2014, 9(5): e95163. [58] Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag SK, Mantri S, Asif MH, Rai A, Kumar S, Shri M, Tripathi P, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R. Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genomics , 2010, 11: 648. [59] Xie Z, Zhang ZL, Zou XL, Yang GX, Komatsu S, Shen QJ. Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J , 2006, 46(2): 231-242. [60] Zhang LY, Gu LK, Ringler P, Smith S, Rushton PJ, Shen QJ. Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells. Plant Sci , 2015, 236: 214-222. [61] De Vleesschauwer D, Van Buyten E, Satoh K, Balidion J, Mauleon R, Choi IR, Vera-Cruz C, Kikuchi S, Höfte M. Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice. Plant Physiol , 2012, 158(4): 1833-1846. [62] Hwang SH, Yie SW, Hwang DJ. Heterologous expression of OsWRKY6 gene in Arabidopsis activates the expression of defense related genes and enhances resistance to pathogens. Plant Sci , 2011, 181(3): 316-323. [63] Wang HH, Hao ZN, Xie K, Wu KL, Guo ZJ. Leucine zipper like structure in rice WRKY89 enhances its affinity for binding with W box elements. Chin Sci Bull , 2005, 50(10): 980-989. [64] Han M, Kim CY, Lee J, Lee SK, Jeon JS. OsWRKY4 2 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Mol Cells , 2014, 37(7): 532-539. [65] Li N, Chen YR, Ding ZH, Li PH, Wu Y, Zhang A, Yu S, Giovannoni JJ, Fei ZJ, Zhang W, Xiang JZ, Xu CM, Liu B, Zhong SL. Nonuniform gene expression pattern detected along the longitudinal axis in the matured rice leaf. Sci Rep , 2015, 5: 8015. [66] Xu WY, Yang RD, Li MN, Xing Z, Yang WQ, Chen G, Guo H, Gong XJ, Du Z, Zhang ZH, Hu XM, Wang D, Qian Q, Wang T, Su Z, Xue YB. Transcriptome phase distribution analysis reveals diurnal regulated biological processes and key pathways in rice flag leaves and seedling leaves. PLoS One , 2011, 6(3): e17613. [67] Htun TM, Inoue C, Chhourn O, Ishii T, Ishikawa R. Effect of quantitative trait loci for seed shattering on abscission layer formation in Asian wild rice Oryza rufipogon . Breed Sci , 2014, 64(3): 199-205. [68] Hu LW, Mei ZL, Zang AP, Chen HY, Dou XY, Jin J, Cai WM. Microarray analyses and comparisons of upper or lower flanks of rice shoot base preceding gravitropic bending. PLoS One , 2013, 8(9): e74646. [69] Wei T, He ZL, Tan XY, Liu X, Yuan X, Luo YF, Hu SN. An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination. Biochem Biophys Res Commun , 2015, 464(1): 176-181. [70] Cai YH, Chen XJ, Xie K, Xing QK, Wu YW, Li J, Du CH, Sun ZX, Guo ZJ. Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice. PLoS One , 2014, 9(7): e102529. [71] Zhang CQ, Xu Y, Lu Y, Yu HX, Gu MH, Liu QQ. The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta , 2011, 234(3): 541-554. [72] Liu L, Zhou Y, Zhou G, Ye RJ, Zhao LN, Li XH, Lin YJ. Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol , 2008, 67(1-2): 37-55. [73] Takehisa H, Sato Y, Antonio BA, Nagamura Y. Global transcriptome profile of rice root in response to essential macronutrient deficiency. Plant Signal Behav , 2013, 8(6): e24409. [74] Oono Y, Kawahara Y, Yazawa T, Kanamori H, Kuramata M, Yamagata H, Hosokawa S, Minami H, Ishikawa S, Wu JZ, Antonio B, Handa H, Itoh T, Matsumoto T. Diversity in the complexity of phosphate starvation transcriptomes among rice cultivars based on RNA-Seq profiles. Plant Mol Biol , 2013, 83(6): 523-537. [75] Wang HJ, Wan AR, Hsu CM, Lee KW, Yu SM, Jauh GY. Transcriptomic adaptations in rice suspension cells under sucrose starvation. Plant Mol Biol , 2007, 63(4): 441-463. [76] Zhang MZ, Fang JH, Yan X, Liu J, Bao JS, Fransson G, Andersson R, Jansson C, Åman P, Sun CX. Molecular insights into how a deficiency of amylose affects carbon allocation-carbohydrate and oil analyses and gene expression profiling in the seeds of a rice waxy mutant. BMC Plant Biol , 2012, 12: 230-247. [77] Drogue B, Sanguin H, Chamam A, Mozar M, Llauro C, Panaud O, Prigent-Combaret C, Picault N, Wisniewski-Dye F. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum -rice cooperation. Front Plant Sci , 2014, 5: 607. [78] Wang HH, Xie K, Wu KL, Guo ZJ. Isolation of a rice WRKY gene OsWRKY52, whose expression is induced by Magnaporthe grisea . Prog Biochem Biophys , 2005, 10(32): 937-946. [79] Chujo T, Sugioka N, Masuda Y, Shibuya N, Takemura T, Okada K, Nojiri H, Yamane H. Promoter analysis of the elicitor-induced WRKY gene OsWRKY53 , which is involved in defense responses in rice. Biosci Biotechnol Biochem , 2009, 73(8): 1901-1904. [80] Cheng HT, Li HB, Deng Y, Xiao JH, Li XH, Wang SP. The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen. Plant Physiol , 2015, 167(3): 1087-1099. [81] Kim SH, Oikawa T, Kyozuka J, Wong HL, Umemura K, Kishi-Kaboshi M, Takahashi A, Kawano Y, Kawasaki T, Shimamoto K. The bHLH rac immunity1 (RAI1) is activated by osrac1 via OsMAPK3 and osmapk6 in rice immunity. Plant Cell Physiol , 2012, 53(4): 740-754. [82] Ueno Y, Yoshida R, Kishi-Kaboshi M, Matsushita A, Jiang CJ, Goto S, Takahashi A, Hirochika H, Takatsuji H. MAP kinases phosphorylate rice WRKY45. Plant Signal Behav , 2013, 8(6): e24510. [83] Yoo SJ, Kim SH, Kim MJ, Ryu CM, Kim YC, Cho BH, Yang KY. Involvement of the OsMKK4-OsMPK1 cascade and its downstream transcription factor OsWRKY53 in the wounding response in rice. Plant Pathol J , 2014, 30(2): 168-177. [84] Koo SC, Moon BC, Kim JK, Kim CY, Sung SJ, Kim MC, Cho MJ, Cheong YH. OsBWMK1 mediates SA-dependent defense responses by activating the transcription factor OsWRKY33. Biochem Biophys Res Commun , 2009, 387(2): 365-370. |
[1] | 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
[2] | 莫健新,王豪强,黄广燕,蔡更元,吴珍芳,张献伟. 微生物源果胶酶在猪PK15细胞中异源表达及其酶学性质分析[J]. 遗传, 2019, 41(8): 736-745. |
[3] | 张豪, 张志鹏, 郭晓东, 马敏, 敖月, 刘旭, 马小燕, 梁浩, 郭旭东. cgVEGF164基因对小鼠毛囊生长的影响[J]. 遗传, 2019, 41(1): 76-84. |
[4] | 胡广东,郝科兴,黄涛,曾维斌,谷新利,王静. 绵羊高效转基因通用型piggyBac转座子载体构建及功能验证[J]. 遗传, 2018, 40(8): 647-656. |
[5] | 徐纪明,胡晗,毛文轩,毛传澡. 利用重测序技术获取转基因植物T-DNA插入位点[J]. 遗传, 2018, 40(8): 676-682. |
[6] | 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
[7] | 杨德卫, 郑向华, 程朝平, 叶宁, 黄凤凰, 叶新福. 基于CSSLs群体定位和图位克隆水稻长芒基因GAD1-2[J]. 遗传, 2018, 40(12): 1101-1111. |
[8] | 辛高伟, 胡熙璕, 王克剑, 王兴春. Cas9蛋白变体VQR高效识别水稻NGAC前间区序列邻近基序[J]. 遗传, 2018, 40(12): 1112-1119. |
[9] | 黄莹,刘琪,池连江,石承民,吴祯,胡敏,石宏,陈华. BIG-Annotator:基因组测序数据高效功能注释及其在遗传诊断中的应用[J]. 遗传, 2018, 40(11): 1015-1023. |
[10] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. |
[11] | 李佳,刘运华,张余,陈晨,余霞,余舜武. 干旱对水稻生物钟基因和干旱胁迫响应基因每日节律性变化的影响[J]. 遗传, 2017, 39(9): 837-846. |
[12] | 陈建伟,邵宁,张雨晨,朱元首,杨立桃,陶生策,卢大儒. 一种载样简单的多重可视化PCR微芯片[J]. 遗传, 2017, 39(6): 525-534. |
[13] | 韩晓斌, 徐冉, 段朋根, 于海跃, 罗越华, 李云海. 水稻斑点叶突变体spl101和spl102的筛选及候选基因鉴定[J]. 遗传, 2017, 39(4): 346-353. |
[14] | 马三垣,夏庆友. 家蚕遗传育种:从传统杂交到分子设计[J]. 遗传, 2017, 39(11): 1025-1032. |
[15] | 沈丹,陈才,王赛赛,陈伟,高波,宋成义. Tc1/Mariner转座子超家族的研究进展[J]. 遗传, 2017, 39(1): 1-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: