遗传 ›› 2011, Vol. 33 ›› Issue (10): 1121-1133.doi: 10.3724/SP.J.1005.2011.01121
付爱思, 刘然, 朱静, 刘天罡
收稿日期:
2011-04-18
修回日期:
2011-08-05
出版日期:
2011-10-20
发布日期:
2011-10-25
通讯作者:
刘天罡
E-mail:liutg@whu.edu.cn
基金资助:
国家重点基础研究发展计划(973计划)项目(编号:2011CBA00806)和国家自然科学基金(编号:310400861)资助
FU Ai-Si, LIU Ran, ZHU Jing, LIU Tian-Gang
Received:
2011-04-18
Revised:
2011-08-05
Online:
2011-10-20
Published:
2011-10-25
摘要: 生物柴油是一种能替代柴油的可再生燃料,然而通过植物油料化学转酯化生产的第一代生物柴油在性能和生产工艺上有很多缺点。近年来随着合成生物学和代谢工程的迅速发展, 通过选择合适的微生物并利用各种生物技术改造其代谢合成途径, 如脂肪酸合成途径、异戊二烯合成途径, 研究人员能利用微生物直接生产性能更加优越、品质更高的新型第二代生物柴油——长链烷烃。文章总结了目前遗传改造微生物代谢途径生产新型柴油的研究进展, 并指出目前该领域存在的问题以及今后的发展方向。
付爱思,刘然,朱静,刘天罡. 遗传改造微生物代谢途径生产新型柴油燃料的研究进展[J]. 遗传, 2011, 33(10): 1121-1133.
FU Ai-Sai, LIU Ran, SHU Jing, LIU Tian-Gang. Genetic engineering of microbial metabolic pathway for production of advanced biodiesel[J]. HEREDITAS, 2011, 33(10): 1121-1133.
[1] Panwar NL, Kaushik SC, Kothari S. Role of renewable energy sources in environmental protection: A review. Renew Sust Energ Rev, 2011, 15(3): 1513-1524.[2] 张延平, 李寅, 马延和. 细胞工厂与生物炼制. 化学进展, 2007, 19(7/8): 1076-1083.[3] Steinbuchel A. Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Curr Opin Biotechnol, 2005, 16(6): 607-613.[4] Nakamura CE, Whited GM. Metabolic engineering for the microbial production of 1, 3-propanediol. Curr Opin Biotechnol, 2003, 14(5): 454-459.[5] Park JH, Lee SY. Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol, 2008, 19(5): 454-460.[6] Liu TG, Khosla C. Genetic engineering of Escherichia coli for biofuel production. Annu Rev Genet, 2010, 44: 53-69.[7] Vasudevan PT, Briggs M. Biodiesel production-current state of the art and challenges. J Ind Microbiol Biotechnol, 2008, 35(5): 421-430.[8] Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA, 2006, 103(30): 11206-11210.[9] Fargione J. Is bioenergy for the birds? An evaluation of alternative future bioenergy landscapes. Proc Natl Acad Sci USA, 2010, 107(44): 18745-18746.[10] Baroutian S, Aroua MK, Raman AAA, Sulaiman NMN. A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Bioresour Technol, 2011, 102(2): 1095-1102.[11] de Boer K, Bahri PA. Supercritical methanol for fatty acid methyl ester production: A review. Biomass Bioenerg, 2011, 35(3): 983-991.[12] Dubé MA, Tremblay AY, Liu J. Biodiesel production using a membrane reactor. Bioresource Technol, 2007, 98(3): 639-647.[13] Guerreiro L, Pereira PM, Fonseca IM, Martin-Aranda RM, Ramos AM, Dias JML, Oliveira R, Vital J. PVA embedded hydrotalcite membranes as basic catalysts for biodiesel synthesis by soybean oil methanolysis. Catal Today, 2010, 156(3-4): 191-197.[14] Jitputti J, Kitiyanan B, Rangsunvigit P, Bunyakiat K, Attanatho L, Jenvanitpanjakul P. Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Biochem Eng J, 2006, 116(1): 61-66.[15] Wang LY, Yang JC. Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol. Fuel, 2007, 86(3): 328-333.[16] Sakuragi H, Kuroda K, Ueda M. Molecular Breeding of Advanced Microorganisms for Biofuel Production. J Biomed Biotechnol, 2011, 2011: 416931.[17] Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils. J Biosci Bioeng, 2001, 92(5): 405-416.[18] Noureddini H, Gao X, Philkana RS. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol, 2005, 96(7): 769-777.[19] Sanchez F, Vasudevan PT. Enzyme catalyzed production of biodiesel from olive oil. Appl Biochem Biotechnol, 2006, 135(1): 1-14.[20] Soumanou MM, Bornscheuer UT. Lipase-catalyzed alcoholysis of vegetable oils. Eur J Lipid Sci Tech, 2003, 105(11): 656-660.[21] de Oliveira D, Di Luccio M, Faccio C, Rosa CD, Bender JP, Lipke N, Menoncin S, Amroginski C, de Oliveira JV. Optimization of enzymatic production of biodiesel from castor oil in organic solvent medium. Appl Biochem Biotechnol, 2004, 115(1-3): 771-780.[22] Chang HM, Liao HF, Lee CC, Shieh CJ. Optimized synthesis of lipase-catalyzed biodiesel by Novozym 435. J Chem Technol Biotechnol, 2005, 80(3): 307-312.[23] Lai CC, Zullaikah S, Vali SR, Ju YH. Lipase-catalyzed production of biodiesel from rice bran oil. J Chem Technol Biotechnol, 2005, 80(3): 331-337.[24] Watanabe Y, Shimada Y, Sugihara A, Tominaga Y. Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. J Am Oil Chem Soc, 2001, 78(7): 703-707.[25] Abdulla R, Chan ES, Ravindra P. Biodiesel production from Jatropha curcas: a critical review. Crit Rev Biotechnol, 2011, 31(1): 53-64.[26] Endalew AK, Kiros Y, Zanzi R. Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO). Energy, 2011, 36(5): 2693-2700.[27] Koh MY, Ghazi TIM. A review of biodiesel production from Jatropha curcas L. oil. Renew Sust Energ Rev, 2011, 15(5): 2240-2251.[28] McGinn PJ, Dickinson KE, Bhatti S, Frigon JC, Guiot SR, O'Leary SJ. Erratum to: Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res, 2011.[29] Qiul JL, Fan XH, Zou HY. Development of biodiesel from inedible feedstock through various production processes. review. Chem Tech Fuels Oil, 2011, 47(2): 102-111.[30] Chen H, Chen GQ. Energy cost of rapeseed-based biodiesel as alternative energy in China. Renewable Energy, 2011, 36(5): 1374-1378.[31] Peralta-Yahya PP, Keasling JD. Advanced biofuel production in microbes. Biotechnol J, 2010, 5(2): 147-162.[32] Jarboe LR, Zhang X, Wang X, Moore JC, Shanmugam KT, Ingram LO. Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol, 2010, 2010: 761042.[33] Clomburg JM, Gonzalez R. Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol, 2010, 86(2): 419-434.[34] Handke P, Lynch SA, Gill RT. Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metab Eng, 2011, 13(1): 28-37.[35] White SW, Zheng J, Zhang YM, Rock CO. The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem, 2005, 74(1): 791-831.[36] Kurth DG, Gago GM, de la Iglesia A, Bazet Lyonnet B, Lin TW, Morbidoni HR, Tsai SC, Gramajo H. ACCase 6 is the essential acetyl-CoA carboxylase involved in fatty acid and mycolic acid biosynthesis in mycobacteria. Microbiology, 2009, 155(Pt 8): 2664-2675.[37] Lin TW, Melgar MM, Kurth D, Swamidass SJ, Purdon J, Tseng T, Gago G, Baldi P, Gramajo H, Tsai SC. Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. Proc Natl Acad Sci USA, 2006, 103(9): 3072-3077.[38] Liu TG, Vora H, Khosla C. Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng, 2010, 12(4): 378-386.[39] Fujita Y, Matsuoka H, Hirooka K. Regulation of fatty acid metabolism in bacteria. Mol Microbiol, 2007, 66(4): 829-839.[40] Magnuson K, Jackowski S, Rock CO, Cronan JE Jr. Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev, 1993, 57(3): 522-542.[41] Davis MS, Cronan JE Jr. Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein. J Bacteriol, 2001, 183(4): 1499-1503.[42] Heath RJ, Rock CO. Inhibition of beta-ketoacyl-acyl carrier protein synthase III (FabH) by acyl-acyl carrier protein in Escherichia coli. J Biol Chem, 1996, 271(18): 10996-11000.[43] Heath RJ, Rock CO. Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. J Biol Chem, 1996, 271(4): 1833-1836.[44] Cronan JE Jr, Waldrop GL. Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res, 2002, 41(5): 407-435.[45] Davis MS, Solbiati J, Cronan JE Jr. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem, 2000, 275(37): 28593-28598.[46] Lu XF, Vora H, Khosla C. Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng, 2008, 10(6): 333-339.[47] Steen EJ, Kang Y, Bokinsky G, Hu ZH, Schirmer A, McClure A, Del Cardayre SB, Keasling JD. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 2010, 463(7280): 559-562.[48] Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev, 2006, 106(9): 4044-4098.[49] Stöveken T, Steinbüchel A. Bacterial acyltransferases as an alternative for lipase-catalyzed acylation for the production of oleochemicals and fuels. Angew Chem Int Ed Engl, 2008, 47(20): 3688-3694.[50] Kalscheuer R, Steinbüchel A. A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem, 2003, 278(10): 8075-8082.[51] Kalscheuer R, Stolting T, Steinbuchel A. Microdiesel: Escherichia coli engineered for fuel production. Microbiology, 2006, 152(Pt 9): 2529-2536.[52] Elbahloul Y, Steinbüchel A. Pilot-scale production of fatty acid ethyl esters by an engineered Escherichia coli strain harboring the p (Microdiesel) plasmid. Appl Environ Microbiol, 2010, 76(13): 4560-4565.[53] Keasling JD, Hu Z, Somerville C, Church G, Berry D, Friedman L, Schirmer A, Brubaker S, Del Cardayre SB. Production of fatty acids and derivatives thereof. WO2007136762. 2007.[54] Duan Y, Zhu Z, Cai K, Tan X, Lu X. De novo biosynthesis of biodiesel by escherichia coli in optimized fed-batch cultivation. PLoS One, 2011, 6(5): e20265.[55] Lu XF. A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv, 2010, 28(6): 742-746.[56] Heath RJ, Rock CO. Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. J Biol Chem, 1995, 270(44): 26538-26542.[57] Lennen RM, Braden DJ, West RM, Dumesic JA, Pfleger BF. A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng, 2010, 106(2): 193-202.[58] Tan XM, Yao L, Gao QQ, Wang WH, Qi FX, Lu XF. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab Eng, 2011, 13(2): 169-176.[59] Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB. Microbial biosynthesis of alkanes. Science, 2010, 329(5991): 559-562.[60] Warui DM, Li N, Nørgaard H, Krebs C, Bollinger JM Jr, Booker SJ. Detection of formate, rather than carbon monoxide, as the stoichiometric coproduct in conversion of fatty aldehydes to alkanes by a cyanobacterial aldehyde decarbonylase. J Am Chem Soc, 2011, 133(10): 3316-3319.[61] Krebs C, Bollinger JM Jr, Booker SJ. Cyanobacterial alkane biosynthesis further expands the catalytic repertoire of the ferritin-like 'di-iron-carboxylate' proteins. Curr Opin Chem Biol, 2011, 15(2): 291-303.[62] Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940-943.[63] Chang MCY, Keasling JD. Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol, 2006, 2(12): 674-681.[64] Farmer WR, Liao JC. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol, 2000, 18(5): 533-537.[65] Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol, 2005, 23(5): 612-616.[66] Alper H, Miyaoku K, Stephanopoulos G. Characterization of lycopene-overproducing E. coli strains in high cell density fermentations. Appl Microbiol Biotechnol, 2006, 72(5): 968-974.[67] Yuan LZ, Rouvière PE, Larossa RA, Suh W. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng, 2006, 8(1): 79-90.[68] Dennis M, Kolattukudy PE. A cobalt-porphyrin enzyme converts a fatty aldehyde to a hydrocarbon and CO. Proc Natl Acad Sci USA, 1992, 89(12): 5306-5310.[69] Withers ST, Gottlieb SS, Lieu B, Newman JD, Keasling JD. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl Environ Microbiol, 2007, 73(19): 6277-6283.[70] Renninger NS, Ryder JA, Fisher KJ. Jetfuel compositions and methods of making and using same. WO2008130492, 2008.[71] Song LS. A soluble form of phosphatase in Saccharomyces cerevisiae capable of converting farnesyl diphosphate into E, E-farnesol. Appl Biochem Biotechnol, 2006, 128(2): 149-158.[72] Martin DM, Fäldt J, Bohlmann J. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol, 2004, 135(4): 1908-1927.[73] Renninger NS, McPhee DJ. Fuel compositions including farnesane and farnesene derivatives and methods of making and using same. WO2008045555, 2008.[74] Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng, 2007, 9(2): 160-168.[75] Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Shin YC, Keasling JD, Kim SW. Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol, 2007, 74(1): 131-139.[76] Lombardi A, De Simone G, Nastri F, Galdiero S, Della Morte R, Staiano N, Pedone C, Bolognesi M, Pavone V. The crystal structure of alpha-thrombin-hirunorm IV complex reveals a novel specificity site recognition mode. Protein Sci, 1999, 8(1): 91-95.[77] Goff SA, Goldberg AL. Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell, 1985, 41(2): 587-595.[78] Rude MA, Schirmer A. New microbial fuels: a biotech perspective. Curr Opin Microbiol, 2009, 12(3): 274-281.[79] Knothe G. “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels, 2008, 22(2): 1358-1364.[80] Mayer KM, Shanklin J. Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach. BMC Plant Biol, 2007, 7: 1.[81] Li Y, Florova G, Reynolds KA. Alteration of the fatty acid profile of Streptomyces coelicolor by replacement of the initiation enzyme 3-ketoacyl acyl carrier protein synthase III (FabH). J Bacteriol, 2005, 187(11): 3795-3799.[82] Dindi H, Sengupta S, Gonzon A. Catalytic process for converting renewable resources into parrafins for use as diesel blending stocks.WO20080312480, 2008.[83] Fischer CR, Klein-Marcuschamer D, Stephanopoulos G. Selection and optimization of microbial hosts for biofuels production. Metab Eng, 2008, 10(6): 295-304.[84] Demain AL, Newcomb M, Wu JH. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev, 2005, 69(1): 124-154.[85] Tyurin MV, Desai SG, Lynd LR. Electrotransformation of Clostridium thermocellum. Appl Environ Microbiol, 2004, 70(2): 883-890.[86] Zheng Y, Pan ZL, Zhang RH, Labavitch JM, Wang DH, Teter SA, Jenkins BM. Evaluation of different biomass materials as feedstock for fermentable sugar production. Appl Biochem Biotechnol, 2007, 137-140(1-12): 423-435.[87] Somerville C. Biofuels. Curr Biol, 2007, 17(4): R115-R119.[88] Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol, 2008, 35(5): 377-391.[89] Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE. How biotech can transform biofuels. Nat Biotechnol, 2008, 26(2): 169-172.[90] Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science, 2007, 315(5813): 801-804.[91] Keasling JD. Synthetic biology for synthetic chemistry. ACS Chem Biol, 2008, 3(1): 64-76.[92] Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. Bmc Genomics, 2011, 12(1): 148.[93] Tan XM, Yao L, Gao QQ, Wang WH, Qi FX, Lu XF. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab Eng, 2011, 13(2): 169-176.[94] Liu XY, Sheng J, Curtiss R III. Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci USA, 2011, 108(17): 6899-6904.[95] Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol, 2008, 19(6): 556-563.[96] Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression. Trends Biotechnol, 2004, 22(7): 346-353.[97] Landrain TE, Carrera J, Kirov B, Rodrigo G, Jaramillo A. Modular model-based design for heterologous bioproduction in bacteria. Curr Opin Biotechnol, 2009, 20(3): 272-279.[98] Santos CNS, Stephanopoulos G. Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol, 2008, 12(2): 168-176.[99] Alper H, Stephanopoulos G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng, 2007, 9(3): 258-267.[100] Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403(6767): 339-342.[101] Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KLJ, Keasling JD. Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol, 2009, 27(8): 753-759.[102] Bond-Watts BB, Bellerose RJ, Chang MCY. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol, 2011, 7(4): 222-227. |
[1] | 王博,刘芳,张二春,沃晨亮,陈振家,钱璞毅,卢浩荣,曾文君,陈泰,危金普,万仟,王韧,徐讯. 国家基因库:共有、共为、共享[J]. 遗传, 2019, 41(8): 761-772. |
[2] | 彭哲慧,潘超,孙鹏,冯尔玲,吴军,朱力,彭清忠,王恒樑. 生物法合成伤寒O-糖蛋白结合疫苗及其免疫原性评估[J]. 遗传, 2015, 37(5): 473-479. |
[3] | 陈献忠,沈微,樊游,王正祥. 后基因组时代的丝状真菌基因组学与代谢工程[J]. 遗传, 2011, 33(10): 1067-1078. |
[4] | 梁泉峰,王倩,祁庆生. 合成生物学与微生物遗传物质的重构[J]. 遗传, 2011, 33(10): 1102-1112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: